Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 9(19): 6353-6361, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28451657

RESUMO

In the field of novel applications involving upconverting processes, the determination of new strategies for realizing emission-tunable nanomaterials is a challenge. In this work the design of Y3+ and Er3+ codoped bismuth oxide-based upconverting nanoparticles is presented, evidencing that the active role of the matrix allows for the emission selectivity with chromaticity control. The bandgap of the bismuth oxide-based host can be manipulated in the range of 0.65 eV, consequently leading to upconversion emission color tunability from red to yellow-greenish. The resulting fine control of the nanoparticle chromaticity through accurate host bandgap engineering reveals a novel concept for the development of a new generation of upconverting nanophosphors.

2.
J Phys Chem A ; 118(42): 9828-36, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25260076

RESUMO

Systematic assessments of cathodoluminescence (CL) spectroscopy, Raman spectroscopy (RS), and X-ray diffraction (XRD) are presented for pure zirconia and for a series of Y-doped zirconia powders (henceforth, simply referred to as undoped ZrO2 and YSZ powders, respectively) synthesized according to a coprecipitation method of Zr and Y chlorides. Emphasis is placed here on spectral emissions related to oxygen-vacancy sites (i.e., oxygen hole states) equally detected from undoped and Y-doped ZrO2 samples, either as intrinsic defects or, extrinsically induced, by means of cathodoluminescence. Most counterintuitively, the undoped ZrO2 sample (i.e., the one with presumably the lowest amount of oxygen vacancies) experienced the strongest CL emission. A progressive "quenching" effect on CL emission with increasing the fraction of Y(3+) dopant could also be observed because the intrinsic vacancies present in the undoped lattice are the most efficient since they can trap two electrons to gain electrical neutrality. However, as soon as Y(3+) ions are introduced in the system, those intrinsic vacancies migrate to Y-sites in next-nearest-neighbor locations, namely in a less efficient lattice location. This phenomenon is tentatively referred to as "delocalization" of vacancy sites. Moreover, the fact that Y-doped zirconia series presents quite similar CL spectra compared to the undoped zirconia could be an evidence that the radiative centers of undoped and Y-doped ZrO2 are basically the same. A fitting procedure has been made aiming to give a rational description of the variation of the spectra morphology, and a parameter able to describe the monoclinic to tetragonal phase transformation has been found. This parameter and the overall set of CL data enabled us to quantitatively assess polymorphic phase fractions by CL spectroscopy in the scanning electron microscope.

3.
Langmuir ; 26(15): 12917-25, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20604556

RESUMO

The cyclohexane-igepal inverse microemulsion, comprehensively established for the synthesis of silica nanoparticles in an ammonia-catalyzed sol-gel process, was alternatively studied with an acid-catalyzed sol-gel process. Tetraethyl orthosilicate (TEOS) was used as the silica precursor, while two different aqueous phases containing either HNO(3) or HCl at two different concentrations, 0.1 and 0.05 M, were examined in the presence and in the absence of NaF, a catalyst of the condensation step. The evolution of the overall reacting system, specifically hydrolysis and polycondensation of reaction intermediates, was monitored in situ by time-resolved small-angle X-ray scattering. No size variation of the inverse micelles was detected throughout the sol-gel process. Conversely, the density of the micellar core increased after a certain time interval, indicating the presence of the polycondensation product. The IR spectra of the reacting mixture were in agreement with such a hypothesis. (1)H and (13)C NMR measurements provided information on the soluble species, the surfactant, and TEOS. The TEOS consumption was well fitted by means of an exponential decay, suggesting that a first-order kinetics for TEOS transpires in the various systems examined, with rate constants dependent not only on the acid concentration but also on its nature (anion specific effect), on the presence of NaF, and on the amount of water in the core of the inverse micelle. The self-diffusion coefficients, determined by means of PGSTE NMR, proved that a sizable amount of the byproduct ethanol was partitioned inside the inverse micelles. Characterization of the final product was carried out by means of thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM), which concurrently confirmed that the silica isolated from the inverse nonionic microemulsion is not significantly different from the product of a bulk acid-catalyzed sol-gel synthesis. TEM micrographs illustrated particles with diameters smaller than the diameter of the inverse micelles as determined by SAXS, due to a shrinkage effect, in addition to nanostructured aggregates in the range 20-100 nm.

4.
J Colloid Interface Sci ; 331(2): 351-5, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19081575

RESUMO

Polymer encapsulation of submicrometer-sized silica particles by synthesis of the polymer shell, poly(methyl methacrylate) under static conditions in a reaction medium free of surfactants and stabilizing agents is described. The Stöber method, a base-catalyzed hydrolysis and condensation of tetraethyl orthosilicate is used for the synthesis of the monodisperse colloidal dispersion of silica particles. The silica particles are subsequently modified in situ with the surface grafting of the silane coupling agent, 3-(trimethoxysilyl)propyl methacrylate. Encapsulation is achieved using tetraethyl orthosilicate as a reaction medium, in which a thermally initiated radical polymerization of methyl methacrylate is promoted in the presence of the modified particles by a seeding method which leads to a thin coating of poly(methyl methacrylate), and hence silica core-shell particles. The complete encapsulation of individual silica spheres by poly(methyl methacrylate) is visually evidenced by TEM microscopy which reveals the presence of a polymer shell coating up to 10 nm. Evidence for the presence of a poly(methyl methacrylate) shell is further corroborated by DSC/TGA, DRIFT-IR and NMR measurements.

5.
Langmuir ; 24(10): 5225-8, 2008 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-18429625

RESUMO

The formation of silica particles by the ammonia-catalyzed hydrolysis of tetraethyl orthosilicate (TEOS) in the polyoxyethylene (5) nonylphenyl ether (NP-5)/cyclohexane/water microemulsion system was investigated by time-resolved small-angle X-ray scattering (SAXS). The SAXS data could be modeled as a combination of two species where one describes the silica-particle containing microemulsion droplets and the other the reverse droplets. The analysis allowed the determination of the evolution of the system of particles of silica and reverse droplets. A model of nucleation and growth of the silica particles is confirmed and the volume fraction versus time data for the silica particles is in agreement with first order kinetics with respect to TEOS concentration. Moreover to describe the long time evolution of the system, a correlation among the silica particles has been taken into account by introducing a structure factor with a local silica volume fraction eta = 0.1. This high local density is 2 orders of magnitude larger than the global silica fraction and can be explained in terms of depleting interaction.

6.
J Colloid Interface Sci ; 311(2): 537-43, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17451736

RESUMO

Natural kaolin was treated at 850 or 950 degrees C in air flow to give respectively the metakaolin samples MK8 and MK9. The obtained materials were successively treated at 90 degrees C with a 1 M solution of H(2)SO(4), for various time lengths. The acid treatment of MK8 was found to give a high surface area microporous material with good catalytic properties related to the high density of acid sites, while MK9 gave an ordered mesoporous material with a low density of acid sites. The materials were characterized by several techniques, X-ray powder diffraction, thermogravimetric analysis, N(2) physisorption, scanning electron microscopy, and temperature-programmed desorption of ammonia. The 1-butene isomerization was used as test reaction to evaluate the acidity of the samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...