Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1389651, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957187

RESUMO

Transcranial direct current stimulation (tDCS) has been studied extensively for its potential to enhance human cognitive functions in healthy individuals and to treat cognitive impairment in various clinical populations. However, little is known about how tDCS modulates the neural networks supporting cognition and the complex interplay with mediating factors that may explain the frequently observed variability of stimulation effects within and between studies. Moreover, research in this field has been characterized by substantial methodological variability, frequent lack of rigorous experimental control and small sample sizes, thereby limiting the generalizability of findings and translational potential of tDCS. The present manuscript aims to delineate how these important issues can be addressed within a neuroimaging context, to reveal the neural underpinnings, predictors and mediators of tDCS-induced behavioral modulation. We will focus on functional magnetic resonance imaging (fMRI), because it allows the investigation of tDCS effects with excellent spatial precision and sufficient temporal resolution across the entire brain. Moreover, high resolution structural imaging data can be acquired for precise localization of stimulation effects, verification of electrode positions on the scalp and realistic current modeling based on individual head and brain anatomy. However, the general principles outlined in this review will also be applicable to other imaging modalities. Following an introduction to the overall state-of-the-art in this field, we will discuss in more detail the underlying causes of variability in previous tDCS studies. Moreover, we will elaborate on design considerations for tDCS-fMRI studies, optimization of tDCS and imaging protocols and how to assure high-level experimental control. Two additional sections address the pressing need for more systematic investigation of tDCS effects across the healthy human lifespan and implications for tDCS studies in age-associated disease, and potential benefits of establishing large-scale, multidisciplinary consortia for more coordinated tDCS research in the future. We hope that this review will contribute to more coordinated, methodologically sound, transparent and reproducible research in this field. Ultimately, our aim is to facilitate a better understanding of the underlying mechanisms by which tDCS modulates human cognitive functions and more effective and individually tailored translational and clinical applications of this technique in the future.

2.
Cortex ; 177: 15-27, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38824804

RESUMO

Previous studies have demonstrated that conventional transcranial direct current stimulation (tDCS) can enhance novel-word learning. However, because of the widespread current that is induced by these setups and lack of appropriate control conditions, little is known about the underlying neural mechanisms. In the present double-blinded and sham-tDCS controlled study, we investigated for the first time if regionally precise focal tDCS targeting two key nodes of the novel-word learning network at different time points would result in regionally and temporally distinct effects. 156 participants completed a contextual novel-word-learning paradigm and learning success was probed immediately after the acquisition period and 30-min later. Participants were randomly assigned to six stimulation conditions: Active tDCS (1.5 mA) was administered to left inferior frontal (IFG) or middle temporal gyrus (MTG), either during acquisition or delayed recall. Control groups received sham-tDCS either during acquisition or delayed recall (50% IFG/MTG). Data were analyzed with a generalized linear mixed model with a binomial link function in a Bayesian framework. Our results showed that frontal tDCS selectively increased accuracy gains from immediate to delayed recall, irrespective of timing of the stimulation. There was no evidence for beneficial effects of middle temporal gyrus tDCS. Our findings confirm that IFG tDCS can enhance novel-word learning in a regionally, but not timing specific way. Tentatively, this may be explained by enhancement of semantic selection processes resulting in more effective consolidation and/or retrieval. Future studies using longer time intervals between assessments are required to clarify the potential contribution of neurophysiological after-effects of IFG tDCS administered during acquisition to enhanced consolidation.

3.
Cochrane Database Syst Rev ; 5: CD015067, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808659

RESUMO

BACKGROUND: Primary progressive aphasia (PPA) accounts for approximately 43% of frontotemporal dementias and is mainly characterised by a progressive impairment of speech and communication abilities. Three clinical variants have been identified: (a) non-fluent/agrammatic, (b) semantic, and (c) logopenic/phonological PPA variants. There is currently no curative treatment for PPA, and the disease progresses inexorably over time, with devastating effects on speech and communication ability, functional status, and quality of life. Several non-pharmacological interventions that may improve symptoms (e.g. different forms of language training and non-invasive brain stimulation) have been investigated in people with PPA. OBJECTIVES: To assess the effects of non-pharmacological interventions for people with PPA on word retrieval (our primary outcome), global language functions, cognition, quality of life, and adverse events. SEARCH METHODS: We searched the Cochrane Dementia and Cognitive Improvement Group's trial register, MEDLINE (Ovid SP), Embase (Ovid SP), four other databases and two other trial registers. The latest searches were run on 26 January 2024. SELECTION CRITERIA: We included randomised controlled trials (RCTs) evaluating the effects of non-pharmacological interventions in people with PPA. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. MAIN RESULTS: There were insufficient data available to conduct the network meta-analyses that we had originally planned (due to trial data being insufficiently reported or not reported at all, as well as the heterogeneous content of the included interventions). Therefore, we provide a descriptive summary of the included studies and results. We included 10 studies, with a total of 132 participants, evaluating non-pharmacological interventions. These were: transcranial direct current stimulation (tDCS) or repetitive transcranial magnetic stimulation (rTMS) as stand-alone treatments (used by two and one studies, respectively); tDCS combined with semantic and phonological word-retrieval training (five studies); tDCS combined with semantic word-retrieval training (one study); and tDCS combined with phonological word-retrieval training (one study). Results for our primary outcome of word retrieval were mixed. For the two studies that investigated the effects of tDCS as stand-alone treatment compared to placebo ("sham") tDCS, we rated the results as having very low-certainty evidence. One study found a significant beneficial effect on word retrieval after active tDCS; one study did not report any significant effects in favour of the active tDCS group. Five studies investigated tDCS administered to the dorsolateral prefrontal cortex, inferior frontal cortex, left frontotemporal region, or the temporoparietal cortex, combined with semantic and phonological word-retrieval training. The most consistent finding was enhancement of word-retrieval ability for trained items immediately after the intervention, when behavioural training was combined with active tDCS compared to behavioural training plus sham tDCS. We found mixed effects for untrained items and maintenance of treatment effects during follow-up assessments. We rated the certainty of the evidence as very low in all studies. One study investigated tDCS combined with semantic word-retrieval training. Training was provided across 15 sessions with a frequency of three to five sessions per week, depending on the personal preferences of the participants. tDCS targeted the left frontotemporal region. The study included three participants: two received 1 mA stimulation and one received 2 mA stimulation. The study showed mixed results. We rated it as very low-certainty evidence. One study investigated tDCS combined with phonological word-retrieval training. Training was again provided across 15 sessions over a period of three weeks. tDCS targeted the left inferior frontal gyrus. This study showed a significantly more pronounced improvement for trained and untrained words in favour of the group that had received active tDCS, but we rated the certainty of the evidence as very low. One study compared active rTMS applied to an individually determined target site to active rTMS applied to a control site (vertex) for effects on participants' word retrieval. This study demonstrated better word retrieval for active rTMS administered to individually determined target brain regions than in the control intervention, but we rated the results as having a very low certainty of evidence. Four studies assessed overall language ability, three studies assessed cognition, five studies assessed potential adverse effects of brain stimulation, and one study investigated quality of life. AUTHORS' CONCLUSIONS: There is currently no high-certainty evidence to inform clinical decision-making regarding non-pharmacological treatment selection for people with PPA. Preliminary evidence suggests that the combination of active tDCS with specific language therapy may improve impaired word retrieval for specifically trained items beyond the effects of behavioural treatment alone. However, more research is needed, including high-quality RCTs with detailed descriptions of participants and methods, and consideration of outcomes such as quality of life, depressive symptoms, and overall cognitive functioning. Moreover, studies assessing optimal treatments (i.e. behavioural interventions, brain stimulation interventions, and their combinations) for individual patients and PPA subtypes are needed. We were not able to conduct the planned (network) meta-analyses due to missing data that could not be obtained from most of the authors, a general lack of RCTs in the field, and heterogeneous interventions in eligible trials. Journals should implement a mandatory data-sharing requirement to assure transparency and accessibility of data from clinical trials.


Assuntos
Afasia Primária Progressiva , Terapia da Linguagem , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Idoso , Humanos , Pessoa de Meia-Idade , Afasia Primária Progressiva/terapia , Viés , Cognição , Comunicação , Idioma , Terapia da Linguagem/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Magnética Transcraniana/métodos
4.
Clin Neurophysiol ; 162: 201-209, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643613

RESUMO

OBJECTIVE: Electrode positioning errors contribute to variability of transcranial direct current stimulation (tDCS) effects. We investigated the impact of electrode positioning errors on current flow for tDCS set-ups with different focality. METHODS: Deviations from planned electrode positions were determined using data acquired in an experimental study (N = 240 datasets) that administered conventional and focal tDCS during magnetic resonance imaging (MRI). Comparison of individualized electric field modeling for planned and empirically derived "actual" electrode positions was conducted to quantify the impact of positioning errors on the electric field dose in target regions for tDCS. RESULTS: Planned electrode positions resulted in higher current dose in the target regions for focal compared to conventional montages (7-12%). Deviations from planned positions significantly reduced current flow in the target regions, selectively for focal set-ups (26-30%). Dose reductions were significantly larger for focal compared to conventional set-ups (29-43%). CONCLUSIONS: Precise positioning is crucial when using focal tDCS set-ups to avoid significant reductions of current dose in the intended target regions. SIGNIFICANCE: Our results highlight the urgent need to routinely implement methods for improving electrode positioning, minimization of electrode drift, verification of electrode positions before and/or after tDCS and also to consider positioning errors when investigating dose-response relationships, especially for focal set-ups.


Assuntos
Eletrodos , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Masculino , Feminino , Adulto , Imageamento por Ressonância Magnética/métodos , Adulto Jovem , Mapeamento Encefálico/métodos
5.
Transl Psychiatry ; 12(1): 394, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127327

RESUMO

The ventromedial prefrontal cortex (vmPFC) mediates the inhibition of defensive responses upon encounters of cues, that had lost their attribute as a threat signal via previous extinction learning. Here, we investigated whether such fear extinction recall can be facilitated by anodal transcranial direct current stimulation (tDCS). Extinction recall was tested twenty-four hours after previously acquired fear was extinguished. Either anodal tDCS or sham stimulation targeting the vmPFC was applied during this test. After stimulation ceased, we examined return of fear after subjects had been re-exposed to aversive events. Fear was assessed by reports of threat expectancy and modulations of autonomic (skin conductance, heart rate) and protective reflex (startle potentiation) measures, the latter of which are mediated by subcortical defense circuits. While tDCS did not affect initial extinction recall, it abolished the return of startle potentiation and autonomic components of the fear response. Results suggest hierarchical multi-level vmPFC functions in human fear inhibition and indicate, that its stimulation might immunize against relapses into pathological subcortically mediated defensive activation.


Assuntos
Medo , Estimulação Transcraniana por Corrente Contínua , Extinção Psicológica/fisiologia , Medo/fisiologia , Humanos , Rememoração Mental/fisiologia , Córtex Pré-Frontal/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos
6.
Neurosci Biobehav Rev ; 140: 104796, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35905800

RESUMO

BACKGROUND: Trajectories of decline across different socio-cognitive domains in healthy older adults and in pathological aging conditions have not been investigated. This was addressed in the present systematic review and meta-analysis. METHODS: MEDLINE, Web of Science Core Collection, CENTRAL, and PsycInfo were searched for studies investigating social cognition across four domains (Theory of Mind, ToM; emotion recognition, ER; Social-decision making, SD; visual perspective taking, VPT) in healthy older individuals, individuals with subjective and mild cognitive impairment (SCD, MCI) and Alzheimer's disease (AD). Random-effects meta-analyses were conducted. RESULTS: Of 8137 screened studies, 132 studies were included in the review. ToM and ER showed a clear progression of impairment from normal aging to AD. Differential patterns of decline were identified for different types of ToM and ER. CONCLUSION: This systematic review identified progression of impairment of specific socio-cognitive abilities, which is the necessary pre-requisite for developing targeted interventions. We identified a lack of research on socio-cognitive decline in different populations (e.g., middle age, SCD and MCI-subtypes) and domains (SDM, VPT).


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Envelhecimento Saudável , Idoso , Cognição , Progressão da Doença , Humanos , Pessoa de Meia-Idade
7.
Alzheimers Dement (N Y) ; 7(1): e12180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34268448

RESUMO

BACKGROUND: Subjective cognitive decline (SCD) is considered a risk factor for Alzheimer's disease (AD), highlighting the need for identifying and ranking effective interventions. This was addressed in a systematic review and network meta-analysis (NMA) of pharmacological and non-pharmacological interventions for SCD. METHODS: MEDLINE, Web of Science Core Collection, CENTRAL, and PsycINFO were searched for randomized controlled trials (RCTs) investigating effects on memory, global cognition, and quality of life. Random-effect model NMAs were conducted. The Cochrane Risk-of-Bias-2 tool assessed methodological quality. Prospero-Registration: CRD42020180457. RESULTS: The systematic review included 56 RCTs. Education programs were most effective for improving memory, second most effective for improving global cognition. Quality of life and adverse events could not be included due to insufficient data. Overall methodological quality of studies was low. CONCLUSION: Education programs were most effective for improving memory and cognition, warranting further research into effective elements of this intervention. There is urgent need to address identified methodological shortcomings in SCD intervention research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...