Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(26): eado0073, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38924399

RESUMO

We report on the energy dependence of the photoemission time delay from the single-element layered dielectric HOPG (highly oriented pyrolytic graphite). This system offers the unique opportunity to directly observe the Eisenbud-Wigner-Smith (EWS) time delays related to the bulk electronic band structure without being strongly perturbed by ubiquitous effects of transport, screening, and multiple scattering. We find the experimental streaking time shifts to be sensitive to the modulation of the density of states in the high-energy region (E ≈ 100 eV) of the band structure. The present attosecond chronoscopy experiments reveal an energy-dependent increase of the photoemission time delay when the final state energy of the excited electrons lies in the vicinity of the bandgap providing information difficult to access by conventional spectroscopy. Accompanying simulations further corroborate our interpretation.

2.
Nature ; 629(8013): 784-790, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720075

RESUMO

Electro-optical photonic integrated circuits (PICs) based on lithium niobate (LiNbO3) have demonstrated the vast capabilities of materials with a high Pockels coefficient1,2. They enable linear and high-speed modulators operating at complementary metal-oxide-semiconductor voltage levels3 to be used in applications including data-centre communications4, high-performance computing and photonic accelerators for AI5. However, industrial use of this technology is hindered by the high cost per wafer and the limited wafer size. The high cost results from the lack of existing high-volume applications in other domains of the sort that accelerated the adoption of silicon-on-insulator (SOI) photonics, which was driven by vast investment in microelectronics. Here we report low-loss PICs made of lithium tantalate (LiTaO3), a material that has already been adopted commercially for 5G radiofrequency filters6 and therefore enables scalable manufacturing at low cost, and it has equal, and in some cases superior, properties to LiNbO3. We show that LiTaO3 can be etched to create low-loss (5.6 dB m-1) PICs using a deep ultraviolet (DUV) stepper-based manufacturing process7. We demonstrate a LiTaO3 Mach-Zehnder modulator (MZM) with a half-wave voltage-length product of 1.9 V cm and an electro-optic bandwidth of up to 40 GHz. In comparison with LiNbO3, LiTaO3 exhibits a much lower birefringence, enabling high-density circuits and broadband operation over all telecommunication bands. Moreover, the platform supports the generation of soliton microcombs. Our work paves the way for the scalable manufacture of low-cost and large-volume next-generation electro-optical PICs.

3.
Nat Commun ; 14(1): 4856, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563149

RESUMO

Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO3. Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss waveguides with losses as low as 4 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than one order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a III-V/LiNbO3 based laser with sub-kHz intrinsic linewidth and tuning rate of 0.7 PHz/s with excellent linearity and CMOS-compatible driving voltage. We also demonstrated a MZM modulator with a 1.73 cm length and a halfwave voltage of 1.94 V.

4.
Nat Commun ; 14(1): 3499, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311746

RESUMO

The availability of thin-film lithium niobate on insulator (LNOI) and advances in processing have led to the emergence of fully integrated LiNbO3 electro-optic devices. Yet to date, LiNbO3 photonic integrated circuits have mostly been fabricated using non-standard etching techniques and partially etched waveguides, that lack the reproducibility achieved in silicon photonics. Widespread application of thin-film LiNbO3 requires a reliable solution with precise lithographic control. Here we demonstrate a heterogeneously integrated LiNbO3 photonic platform employing wafer-scale bonding of thin-film LiNbO3 to silicon nitride (Si3N4) photonic integrated circuits. The platform maintains the low propagation loss (<0.1 dB/cm) and efficient fiber-to-chip coupling (<2.5 dB per facet) of the Si3N4 waveguides and provides a link between passive Si3N4 circuits and electro-optic components with adiabatic mode converters experiencing insertion losses below 0.1 dB. Using this approach we demonstrate several key applications, thus providing a scalable, foundry-ready solution to complex LiNbO3 integrated photonic circuits.

5.
Nature ; 615(7952): 411-417, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922611

RESUMO

Early works1 and recent advances in thin-film lithium niobate (LiNbO3) on insulator have enabled low-loss photonic integrated circuits2,3, modulators with improved half-wave voltage4,5, electro-optic frequency combs6 and on-chip electro-optic devices, with applications ranging from microwave photonics to microwave-to-optical quantum interfaces7. Although recent advances have demonstrated tunable integrated lasers based on LiNbO3 (refs. 8,9), the full potential of this platform to demonstrate frequency-agile, narrow-linewidth integrated lasers has not been achieved. Here we report such a laser with a fast tuning rate based on a hybrid silicon nitride (Si3N4)-LiNbO3 photonic platform and demonstrate its use for coherent laser ranging. Our platform is based on heterogeneous integration of ultralow-loss Si3N4 photonic integrated circuits with thin-film LiNbO3 through direct bonding at the wafer level, in contrast to previously demonstrated chiplet-level integration10, featuring low propagation loss of 8.5 decibels per metre, enabling narrow-linewidth lasing (intrinsic linewidth of 3 kilohertz) by self-injection locking to a laser diode. The hybrid mode of the resonator allows electro-optic laser frequency tuning at a speed of 12 × 1015 hertz per second with high linearity and low hysteresis while retaining the narrow linewidth. Using a hybrid integrated laser, we perform a proof-of-concept coherent optical ranging (FMCW LiDAR) experiment. Endowing Si3N4 photonic integrated circuits with LiNbO3 creates a platform that combines the individual advantages of thin-film LiNbO3 with those of Si3N4, which show precise lithographic control, mature manufacturing and ultralow loss11,12.

6.
Nature ; 612(7938): 56-61, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450905

RESUMO

The ability to amplify optical signals is of pivotal importance across science and technology typically using rare-earth-doped fibres or gain media based on III-V semiconductors. A different physical process to amplify optical signals is to use the Kerr nonlinearity of optical fibres through parametric interactions1,2. Pioneering work demonstrated continuous-wave net-gain travelling-wave parametric amplification in fibres3, enabling, for example, phase-sensitive (that is, noiseless) amplification4, link span increase5, signal regeneration and nonlinear phase noise mitigation6. Despite great progress7-15, all photonic integrated circuit-based demonstrations of net parametric gain have necessitated pulsed lasers, limiting their practical use. Until now, only bulk micromachined periodically poled lithium niobate (PPLN) waveguide chips have achieved continuous-wave gain16,17, yet their integration with silicon-wafer-based photonic circuits has not been shown. Here we demonstrate a photonic-integrated-circuit-based travelling-wave optical parametric amplifier with net signal gain in the continuous-wave regime. Using ultralow-loss, dispersion-engineered, metre-long, Si3N4 photonic integrated circuits18 on a silicon chip of dimensions 5 × 5 mm2, we achieve a continuous parametric gain of 12 dB that exceeds both the on-chip optical propagation loss and fibre-chip-fibre coupling losses in the telecommunication C band. Our work demonstrates the potential of photonic-integrated-circuit-based parametric amplifiers that have lithographically controlled gain spectrum, compact footprint, resilience to optical feedback and quantum-limited performance, and can operate in the wavelength ranges from visible to mid-infrared and outside conventional rare-earth amplification bands.

7.
Nat Commun ; 13(1): 3280, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672284

RESUMO

Laser-based ranging (LiDAR) - already ubiquitously used in industrial monitoring, atmospheric dynamics, or geodesy - is a key sensor technology. Coherent laser ranging, in contrast to time-of-flight approaches, is immune to ambient light, operates continuous-wave allowing higher average powers, and yields simultaneous velocity and distance information. State-of-the-art coherent single laser-detector architectures reach hundreds of kilopixel per second sampling rates, while emerging applications - autonomous driving, robotics, and augmented reality - mandate megapixel per second point sampling to support real-time video-rate imaging. Yet, such rates of coherent LiDAR have not been demonstrated. Recent advances in photonic chip-based microcombs provide a route to higher acquisition speeds via parallelization but require separation of individual channels at the detector side, increasing photonic integration complexity. Here we overcome the challenge and report a hardware-efficient swept dual-soliton microcomb technique that achieves coherent ranging and velocimetry at megapixel per second line scan measurement rates with up to 64 optical channels. Multiheterodyning two synchronously frequency-modulated microcombs yields distance and velocity information of all individual ranging channels on a single receiver alleviating the need for individual separation, detection, and digitization. The reported LiDAR implementation is compatible with photonic integration and demonstrates the significant advantages of acquisition speed afforded by the convergence of optical telecommunication and metrology technologies.

8.
Science ; 376(6599): 1309-1313, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35709288

RESUMO

Erbium-doped fiber amplifiers revolutionized long-haul optical communications and laser technology. Erbium ions could provide a basis for efficient optical amplification in photonic integrated circuits but their use remains impractical as a result of insufficient output power. We demonstrate a photonic integrated circuit-based erbium amplifier reaching 145 milliwatts of output power and more than 30 decibels of small-signal gain-on par with commercial fiber amplifiers and surpassing state-of-the-art III-V heterogeneously integrated semiconductor amplifiers. We apply ion implantation to ultralow-loss silicon nitride (Si3N4) photonic integrated circuits, which are able to increase the soliton microcomb output power by 100 times, achieving power requirements for low-noise photonic microwave generation and wavelength-division multiplexing optical communications. Endowing Si3N4 photonic integrated circuits with gain enables the miniaturization of various fiber-based devices such as high-pulse-energy femtosecond mode-locked lasers.

9.
Nat Commun ; 13(1): 3522, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725718

RESUMO

Frequency modulated continuous wave laser ranging (FMCW LiDAR) enables distance mapping with simultaneous position and velocity information, is immune to stray light, can achieve long range, operate in the eye-safe region of 1550 nm and achieve high sensitivity. Despite its advantages, it is compounded by the simultaneous requirement of both narrow linewidth low noise lasers that can be precisely chirped. While integrated silicon-based lasers, compatible with wafer scale manufacturing in large volumes at low cost, have experienced major advances and are now employed on a commercial scale in data centers, and impressive progress has led to integrated lasers with (ultra) narrow sub-100 Hz-level intrinsic linewidth based on optical feedback from photonic circuits, these lasers presently lack fast nonthermal tuning, i.e. frequency agility as required for coherent ranging. Here, we demonstrate a hybrid photonic integrated laser that exhibits very narrow intrinsic linewidth of 25 Hz while offering linear, hysteresis-free, and mode-hop-free-tuning beyond 1 GHz with up to megahertz actuation bandwidth constituting 1.6 × 1015 Hz/s tuning speed. Our approach uses foundry-based technologies - ultralow-loss (1 dB/m) Si3N4 photonic microresonators, combined with aluminium nitride (AlN) or lead zirconium titanate (PZT) microelectromechanical systems (MEMS) based stress-optic actuation. Electrically driven low-phase-noise lasing is attained by self-injection locking of an Indium Phosphide (InP) laser chip and only limited by fundamental thermo-refractive noise at mid-range offsets. By utilizing difference-drive and apodization of the photonic chip to suppress mechanical vibrations of the chip, a flat actuation response up to 10 MHz is achieved. We leverage this capability to demonstrate a compact coherent LiDAR engine that can generate up to 800 kHz FMCW triangular optical chirp signals, requiring neither any active linearization nor predistortion compensation, and perform a 10 m optical ranging experiment, with a resolution of 12.5 cm. Our results constitute a photonic integrated laser system for scenarios where high compactness, fast frequency actuation, and high spectral purity are required.

10.
Sci Adv ; 8(13): eabm6982, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35363514

RESUMO

A photonic dimer composed of two evanescently coupled high-Q microresonators is a fundamental element of multimode soliton lattices. It has demonstrated a variety of emergent nonlinear phenomena, including supermode soliton generation and soliton hopping. Here, we present another aspect of dissipative soliton generation in coupled resonators, revealing the advantages of this system over conventional single-resonator platforms. Namely, we show that the accessibility of solitons markedly varies for symmetric and antisymmetric supermode families. Linear measurements reveal that the coupling between transverse modes, giving rise to avoided mode crossings, can be substantially suppressed. We explain the origin of this phenomenon and show its influence on the dissipative Kerr soliton generation in lattices of coupled resonators of any type. Choosing an example of the topological Su-Schrieffer-Heeger model, we demonstrate how the edge state can be protected from the interaction with higher-order modes, allowing for the formation of topological Kerr solitons.

11.
Science ; 373(6550): 99-103, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34210884

RESUMO

Silicon photonics enables wafer-scale integration of optical functionalities on chip. Silicon-based laser frequency combs can provide integrated sources of mutually coherent laser lines for terabit-per-second transceivers, parallel coherent light detection and ranging, or photonics-assisted signal processing. We report heterogeneously integrated laser soliton microcombs combining both indium phospide/silicon (InP/Si) semiconductor lasers and ultralow-loss silicon nitride (Si3N4) microresonators on a monolithic silicon substrate. Thousands of devices can be produced from a single wafer by using complementary metal-oxide-semiconductor-compatible techniques. With on-chip electrical control of the laser-microresonator relative optical phase, these devices can output single-soliton microcombs with a 100-gigahertz repetition rate. Furthermore, we observe laser frequency noise reduction due to self-injection locking of the InP/Si laser to the Si3N4 microresonator. Our approach provides a route for large-volume, low-cost manufacturing of narrow-linewidth, chip-based frequency combs for next-generation high-capacity transceivers, data centers, space and mobile platforms.

12.
Nat Commun ; 12(1): 427, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462200

RESUMO

Spectral domain optical coherence tomography (OCT) is a widely employed, minimally invasive bio-medical imaging technique, which requires a broadband light source, typically implemented by super-luminescent diodes. Recent advances in soliton based photonic integrated frequency combs (soliton microcombs) have enabled the development of low-noise, broadband chipscale frequency comb sources, whose potential for OCT imaging has not yet been unexplored. Here, we explore the use of dissipative Kerr soliton microcombs in spectral domain OCT and show that, by using photonic chipscale Si3N4 resonators in conjunction with 1300 nm pump lasers, spectral bandwidths exceeding those of commercial OCT sources are possible. We characterized the exceptional noise properties of our source (in comparison to conventional OCT sources) and demonstrate that the soliton states in microresonators exhibit a residual intensity noise floor at high offset frequencies that is ca. 3 dB lower than a traditional OCT source at identical power, and can exhibit significantly lower noise performance for powers at the milli-Watt level. Moreover, we demonstrate that classical amplitude noise of all soliton comb teeth are correlated, i.e., common mode, in contrast to superluminescent diodes or incoherent microcomb states, which opens a new avenue to improve imaging speed and performance beyond the thermal noise limit.


Assuntos
Desenho de Equipamento , Tomografia de Coerência Óptica/instrumentação , Animais , Artefatos , Encéfalo/diagnóstico por imagem , Estudos de Viabilidade , Camundongos
13.
Chirality ; 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33091214

RESUMO

We present aspects of emerging optical activity in thin racemic 1,1'-Bi-2-naphthol films upon irradiation with circularly polarized light and subsequent resonant two-photon absorption in the sample. Thorough analysis of the sample morphology is conducted by means of (polarization-resolved) optical microscopy and scanning electron microscopy (SEM). The influence of crystallization on the nonlinear probing technique (second harmonic generation circular dichroism [SHG-CD]) is investigated. Optical activity and crystallization are brought together by a systematic investigation in different crystallization regimes. We find crystallization to be responsible for two counter-acting effects, which arise for different states of crystallization. Measuring crystallized samples offers the best signal-to-noise ratio, but it limits generation of optical activity due to self-assembly effects. For suppression of crystallization on the other hand, there is a clear indication that enantiomeric selective desorption is responsible for the generation of optical activity in the sample. We reach the current resolution limit of probing with SHG-CD, as we suppress the crystallization in the racemic sample during desorption. In addition, intensity-dependent measurements on the induced optical activity reveal an onset threshold (≈0.7 TW cm-2), above which higher order nonlinear processes impair the generation of optical activity by desorption with CPL.

14.
Nature ; 581(7807): 164-170, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32405018

RESUMO

Coherent ranging, also known as frequency-modulated continuous-wave (FMCW) laser-based light detection and ranging (lidar)1 is used for long-range three-dimensional distance and velocimetry in autonomous driving2,3. FMCW lidar maps distance to frequency4,5 using frequency-chirped waveforms and simultaneously measures the Doppler shift of the reflected laser light, similar to sonar or radar6,7 and coherent detection prevents interference from sunlight and other lidar systems. However, coherent ranging has a lower acquisition speed and requires precisely chirped8 and highly coherent5 laser sources, hindering widespread use of the lidar system and impeding parallelization, compared to modern time-of-flight ranging systems that use arrays of individual lasers. Here we demonstrate a massively parallel coherent lidar scheme using an ultra-low-loss photonic chip-based soliton microcomb9. By fast chirping of the pump laser in the soliton existence range10 of a microcomb with amplitudes of up to several gigahertz and a sweep rate of up to ten megahertz, a rapid frequency change occurs in the underlying carrier waveform of the soliton pulse stream, but the pulse-to-pulse repetition rate of the soliton pulse stream is retained. As a result, the chirp from a single narrow-linewidth pump laser is transferred to all spectral comb teeth of the soliton at once, thus enabling parallelism in the FMCW lidar. Using this approach we generate 30 distinct channels, demonstrating both parallel distance and velocity measurements at an equivalent rate of three megapixels per second, with the potential to improve sampling rates beyond 150 megapixels per second and to increase the image refresh rate of the FMCW lidar by up to two orders of magnitude without deterioration of eye safety. This approach, when combined with photonic phase arrays11 based on nanophotonic gratings12, provides a technological basis for compact, massively parallel and ultrahigh-frame-rate coherent lidar systems.

15.
Phys Rev Lett ; 123(17): 176801, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31702261

RESUMO

We report measurements of the temporal dynamics of the valence band photoemission from the magnesium (0001) surface across the resonance of the Γ[over ¯] surface state at 134 eV and link them to observations of high-resolution synchrotron photoemission and numerical calculations of the time-dependent Schrödinger equation using an effective single-electron model potential. We observe a decrease in the time delay between photoemission from delocalized valence states and the localized core orbitals on resonance. Our approach to rigorously link excitation energy-resolved conventional steady-state photoemission with attosecond streaking spectroscopy reveals the connection between energy-space properties of bound electronic states and the temporal dynamics of the fundamental electronic excitations underlying the photoelectric effect.

16.
Angew Chem Int Ed Engl ; 58(44): 15685-15689, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31393661

RESUMO

The interest in enantioseparation and enantiopurification of chiral molecules has been drastically increasing over the past decades, since these are important steps in various disciplines such as pharmaceutical industry, asymmetric catalysis, and chiral sensing. By exposing racemic samples of BINOL (1,1'-bi-2-naphthol) coated onto achiral glass substrates to circularly polarized light, we unambiguously demonstrate that by controlling the handedness of circularly polarized light, preferential desorption of enantiomers can be achieved. There are currently no mechanisms known that would describe this phenomenon. Our observation together with a simplified phenomenological model suggests that the process of laser desorption needs to be further developed and the contribution of quantum mechanical processes should be revisited to account for these data. Asymmetric laser desorption provides us with a contamination-free technique for the enantioenrichment of chiral compounds.

17.
Nat Commun ; 9(1): 719, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29459621

RESUMO

Ultrafast spectroscopy with attosecond resolution has enabled the real time observation of ultrafast electron dynamics in atoms, molecules and solids. These experiments employ attosecond pulses or pulse trains and explore dynamical processes in a pump-probe scheme that is selectively sensitive to electronic state of matter via photoelectron or XUV absorption spectroscopy or that includes changes of the ionic state detected via photo-ion mass spectrometry. Here, we demonstrate how the implementation of combined photo-ion and absorption spectroscopy with attosecond resolution enables tracking the complex multidimensional excitation and decay cascade of an Auger auto-ionization process of a few femtoseconds in highly excited krypton. In tandem with theory, our study reveals the role of intermediate electronic states in the formation of multiply charged ions. Amplitude tuning of a dressing laser field addresses different groups of decay channels and allows exerting temporal and quantitative control over the ionization dynamics in rare gas atoms.

18.
Opt Lett ; 40(12): 2846-9, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26076277

RESUMO

Recent advances in the development of attosecond soft x-ray sources toward photon wavelengths below 10 nm are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. We demonstrate that current attosecond experiments in the sub-200-eV range benefit from these improved optics. We present our achievements in utilizing ion-beam-deposited chromium/scandium (Cr/Sc) multilayer mirrors, optimized by tailored material dependent deposition and interface polishing, for the generation of single attosecond pulses from a high-harmonic cut-off spectrum at a central energy of 145 eV. Isolated attosecond pulses have been measured by soft x-ray-pump/NIR-probe electron streaking experiments and characterized using frequency-resolved optical gating for complete reconstruction of attosecond bursts (FROG/CRAB). The results demonstrate that Cr/Sc multilayer mirrors can be used as efficient attosecond optics for reflecting 600-attosecond pulses at a photon energy of 145 eV, which is a prerequisite for present and future attosecond experiments in this energy range.

19.
Opt Express ; 20(25): 27661-9, 2012 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-23262714

RESUMO

We demonstrate dispersion engineering of integrated silicon nitride based ring resonators through conformal coating with hafnium dioxide deposited on top of the structures via atomic layer deposition. Both, magnitude and bandwidth of anomalous dispersion can be significantly increased. The results are confirmed by high resolution frequency-comb-assisted-diode-laser spectroscopy and are in very good agreement with the simulated modification of the mode spectrum.


Assuntos
Modelos Teóricos , Óptica e Fotônica/instrumentação , Óptica e Fotônica/métodos , Compostos de Silício/química , Análise Espectral/instrumentação , Análise Espectral/métodos , Desenho de Equipamento , Análise de Elementos Finitos , Háfnio/química , Lasers Semicondutores , Microscopia Eletrônica de Varredura , Microtecnologia/instrumentação , Microtecnologia/métodos , Dinâmica não Linear , Óxidos/química , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...