Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(38): e2207761119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095184

RESUMO

Aerobic life is powered by membrane-bound enzymes that catalyze the transfer of electrons to oxygen and protons across a biological membrane. Cytochrome c oxidase (CcO) functions as a terminal electron acceptor in mitochondrial and bacterial respiratory chains, driving cellular respiration and transducing the free energy from O2 reduction into proton pumping. Here we show that CcO creates orientated electric fields around a nonpolar cavity next to the active site, establishing a molecular switch that directs the protons along distinct pathways. By combining large-scale quantum chemical density functional theory (DFT) calculations with hybrid quantum mechanics/molecular mechanics (QM/MM) simulations and atomistic molecular dynamics (MD) explorations, we find that reduction of the electron donor, heme a, leads to dissociation of an arginine (Arg438)-heme a3 D-propionate ion-pair. This ion-pair dissociation creates a strong electric field of up to 1 V Å-1 along a water-mediated proton array leading to a transient proton loading site (PLS) near the active site. Protonation of the PLS triggers the reduction of the active site, which in turn aligns the electric field vectors along a second, "chemical," proton pathway. We find a linear energy relationship of the proton transfer barrier with the electric field strength that explains the effectivity of the gating process. Our mechanism shows distinct similarities to principles also found in other energy-converting enzymes, suggesting that orientated electric fields generally control enzyme catalysis.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Prótons , Aerobiose , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/química , Oxigênio/metabolismo , Água/química
2.
Proc Natl Acad Sci U S A ; 119(30): e2205228119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858451

RESUMO

The mitochondrial electron transport chain maintains the proton motive force that powers adenosine triphosphate (ATP) synthesis. The energy for this process comes from oxidation of reduced nicotinamide adenine dinucleotide (NADH) and succinate, with the electrons from this oxidation passed via intermediate carriers to oxygen. Complex IV (CIV), the terminal oxidase, transfers electrons from the intermediate electron carrier cytochrome c to oxygen, contributing to the proton motive force in the process. Within CIV, protons move through the K and D pathways during turnover. The former is responsible for transferring two protons to the enzyme's catalytic site upon its reduction, where they eventually combine with oxygen and electrons to form water. CIV is the main site for respiratory regulation, and although previous studies showed that steroid binding can regulate CIV activity, little is known about how this regulation occurs. Here, we characterize the interaction between CIV and steroids using a combination of kinetic experiments, structure determination, and molecular simulations. We show that molecules with a sterol moiety, such as glyco-diosgenin and cholesteryl hemisuccinate, reversibly inhibit CIV. Flash photolysis experiments probing the rapid equilibration of electrons within CIV demonstrate that binding of these molecules inhibits proton uptake through the K pathway. Single particle cryogenic electron microscopy (cryo-EM) of CIV with glyco-diosgenin reveals a previously undescribed steroid binding site adjacent to the K pathway, and molecular simulations suggest that the steroid binding modulates the conformational dynamics of key residues and proton transfer kinetics within this pathway. The binding pose of the sterol group sheds light on possible structural gating mechanisms in the CIV catalytic cycle.


Assuntos
Diosgenina , Complexo IV da Cadeia de Transporte de Elétrons , Esteroides , Animais , Sítios de Ligação , Domínio Catalítico/efeitos dos fármacos , Bovinos , Diosgenina/farmacologia , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/química , Oxirredução , Oxigênio/metabolismo , Conformação Proteica , Prótons , Esteroides/química , Esteroides/farmacologia , Esteróis
3.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34272275

RESUMO

Cellular respiration is powered by membrane-bound redox enzymes that convert chemical energy into an electrochemical proton gradient and drive the energy metabolism. By combining large-scale classical and quantum mechanical simulations with cryo-electron microscopy data, we resolve here molecular details of conformational changes linked to proton pumping in the mammalian complex I. Our data suggest that complex I deactivation blocks water-mediated proton transfer between a membrane-bound quinone site and proton-pumping modules, decoupling the energy-transduction machinery. We identify a putative gating region at the interface between membrane domain subunits ND1 and ND3/ND4L/ND6 that modulates the proton transfer by conformational changes in transmembrane helices and bulky residues. The region is perturbed by mutations linked to human mitochondrial disorders and is suggested to also undergo conformational changes during catalysis of simpler complex I variants that lack the "active"-to-"deactive" transition. Our findings suggest that conformational changes in transmembrane helices modulate the proton transfer dynamics by wetting/dewetting transitions and provide important functional insight into the mammalian respiratory complex I.


Assuntos
Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Prótons , Animais , Sítios de Ligação , Transporte Biológico , Respiração Celular , Microscopia Crioeletrônica , Complexo I de Transporte de Elétrons/genética , Metabolismo Energético , Humanos , Doenças Mitocondriais/genética , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Simulação de Dinâmica Molecular , Mutação , Oxirredução , Conformação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Quinonas/química , Quinonas/metabolismo , Água/química , Água/metabolismo
4.
J Am Chem Soc ; 142(52): 21758-21766, 2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33325238

RESUMO

The respiratory complex I is a gigantic (1 MDa) redox-driven proton pump that reduces the ubiquinone pool and generates proton motive force to power ATP synthesis in mitochondria. Despite resolved molecular structures and biochemical characterization of the enzyme from multiple organisms, its long-range (∼300 Å) proton-coupled electron transfer (PCET) mechanism remains unsolved. We employ here microsecond molecular dynamics simulations to probe the dynamics of the mammalian complex I in combination with hybrid quantum/classical (QM/MM) free energy calculations to explore how proton pumping reactions are triggered within its 200 Å wide membrane domain. Our simulations predict extensive hydration dynamics of the antiporter-like subunits in complex I that enable lateral proton transfer reactions on a microsecond time scale. We further show how the coupling between conserved ion pairs and charged residues modulate the proton transfer dynamics, and how transmembrane helices and gating residues control the hydration process. Our findings suggest that the mammalian complex I pumps protons by tightly linked conformational and electrostatic coupling principles.


Assuntos
Biocatálise , Complexo I de Transporte de Elétrons/metabolismo , Simulação de Dinâmica Molecular , Água/metabolismo , Transporte de Elétrons , Complexo I de Transporte de Elétrons/química , Teoria Quântica , Eletricidade Estática , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...