Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 39(13): e103954, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32449565

RESUMO

The accumulation and prion-like propagation of α-synuclein and other amyloidogenic proteins are associated with devastating neurodegenerative diseases. Metazoan heat shock protein HSP70 and its co-chaperones DNAJB1 and HSP110 constitute a disaggregation machinery that is able to disassemble α-synuclein fibrils in vitro, but its physiological effects on α-synuclein toxicity are unknown. Here, we depleted Caenorhabditis elegans HSP-110 and monitored the consequences on α-synuclein-related pathological phenotypes such as misfolding, intercellular spreading, and toxicity in C. elegans in vivo models. Depletion of HSP-110 impaired HSP70 disaggregation activity, prevented resolubilization of amorphous aggregates, and compromised the overall cellular folding capacity. At the same time, HSP-110 depletion reduced α-synuclein foci formation, cell-to-cell transmission, and toxicity. These data demonstrate that the HSP70 disaggregation activity constitutes a double-edged sword, as it is essential for maintaining cellular proteostasis but also involved in the generation of toxic amyloid-type protein species.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Agregados Proteicos , alfa-Sinucleína/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP70/genética , alfa-Sinucleína/genética
2.
Essays Biochem ; 60(2): 181-190, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27744334

RESUMO

A particular subgroup of protein-misfolding diseases, comprising Alzheimer's and Parkinson's disease, involves amyloidogenic proteins that can form alternative pathogenic conformations with a high tendency to self-assemble into oligomeric and fibrillar species. Although misfolded proteins have been clearly linked to disease, the exact nature of the toxic species remains highly controversial. Increasing evidence suggests that there is little correlation between the occurrence of macroscopic protein deposits and toxic phenotypes in affected cells and tissues. In this article, we recap amyloid aggregation pathways, describe prion-like propagation, elaborate on detrimental interactions of protein aggregates with the cellular protein quality control system and discuss why some aggregates are toxic, whereas others seem to be beneficial. On the basis of recent studies on prion strains, we reason that the specific aggregate conformation and the resulting individual interaction with the cellular environment might be the major determinant of toxicity.


Assuntos
Agregados Proteicos , Deficiências na Proteostase/metabolismo , Amiloide/metabolismo , Humanos , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Príons/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...