Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 29(10): 2159-2163, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37735788

RESUMO

Several occurrences of human-to-human transmission of Andes virus, an etiological agent of hantavirus cardiopulmonary syndrome, are documented. Syrian hamsters consistently model human hantavirus cardiopulmonary syndrome, yet neither transmission nor shedding has been investigated. We demonstrate horizontal virus transmission and show that Andes virus is shed efficiently from both inoculated and contact-infected hamsters.


Assuntos
Orthohantavírus , Animais , Cricetinae , Humanos , Mesocricetus , Síndrome
2.
Viruses ; 13(11)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34834992

RESUMO

Although there have been documented Ebola virus disease outbreaks for more than 40 years, the natural reservoir host has not been identified. Recent studies provide evidence that the Angolan free-tailed bat (Mops condylurus), an insectivorous microbat, is a possible ebolavirus reservoir. To investigate the potential role of this bat species in the ecology of ebolaviruses, replication, tolerance, and persistence of Ebola virus (EBOV) were investigated in 10 different primary bat cell isolates from M. condylurus. Varying EBOV replication kinetics corresponded to the expression levels of the integral membrane protein NPC1. All primary cells were highly tolerant to EBOV infection without cytopathic effects. The observed persistent EBOV infection for 150 days in lung primary cells, without resultant selective pressure leading to virus mutation, indicate the intrinsic ability of EBOV to persist in this bat species. These results provide further evidence for this bat species to be a likely reservoir of ebolaviruses.


Assuntos
Quirópteros/virologia , Ebolavirus , Doença pelo Vírus Ebola/virologia , Tolerância Imunológica , Animais , Surtos de Doenças , Reservatórios de Doenças/virologia , Ebolavirus/genética , Replicação Viral
3.
Syst Biol ; 70(6): 1077-1089, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33693838

RESUMO

The family Pteropodidae (Old World fruit bats) comprises $>$200 species distributed across the Old World tropics and subtropics. Most pteropodids feed on fruit, suggesting an early origin of frugivory, although several lineages have shifted to nectar-based diets. Pteropodids are of exceptional conservation concern with $>$50% of species considered threatened, yet the systematics of this group has long been debated, with uncertainty surrounding early splits attributed to an ancient rapid diversification. Resolving the relationships among the main pteropodid lineages is essential if we are to fully understand their evolutionary distinctiveness, and the extent to which these bats have transitioned to nectar-feeding. Here we generated orthologous sequences for $>$1400 nuclear protein-coding genes (2.8 million base pairs) across 114 species from 43 genera of Old World fruit bats (57% and 96% of extant species- and genus-level diversity, respectively), and combined phylogenomic inference with filtering by information content to resolve systematic relationships among the major lineages. Concatenation and coalescent-based methods recovered three distinct backbone topologies that were not able to be reconciled by filtering via phylogenetic information content. Concordance analysis and gene genealogy interrogation show that one topology is consistently the best supported, and that observed phylogenetic conflicts arise from both gene tree error and deep incomplete lineage sorting. In addition to resolving long-standing inconsistencies in the reported relationships among major lineages, we show that Old World fruit bats have likely undergone at least seven independent dietary transitions from frugivory to nectarivory. Finally, we use this phylogeny to identify and describe one new genus. [Chiroptera; coalescence; concordance; incomplete lineage sorting; nectar feeder; species tree; target enrichment.].


Assuntos
Quirópteros , Animais , Evolução Biológica , Quirópteros/genética , Evolução Molecular , Filogenia
4.
PLoS Negl Trop Dis ; 14(12): e0008898, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33320860

RESUMO

Rabies is a fatal neurologic disease caused by lyssavirus infection. Bats are important natural reservoir hosts of various lyssaviruses that can be transmitted to people. The epidemiology and pathogenesis of rabies in bats are poorly understood, making it difficult to prevent zoonotic transmission. To further our understanding of lyssavirus pathogenesis in a natural bat host, an experimental model using straw-colored fruit bats (Eidolon helvum) and Lagos bat virus, an endemic lyssavirus in this species, was developed. To determine the lowest viral dose resulting in 100% productive infection, bats in five groups (four bats per group) were inoculated intramuscularly with one of five doses, ranging from 100.1 to 104.1 median tissue culture infectious dose (TCID50). More bats died due to the development of rabies after the middle dose (102.1 TCID50, 4/4 bats) than after lower (101.1, 2/4; 101.1, 2/4) or higher (103.1, 2/4; 104.1, 2/4) doses of virus. In the two highest dose groups, 4/8 bats developed rabies. Of those bats that remained healthy 3/4 bats seroconverted, suggesting that high antigen loads can trigger a strong immune response that abrogates a productive infection. In contrast, in the two lowest dose groups, 3/8 bats developed rabies, 1/8 remained healthy and seroconverted and 4/8 bats remained healthy and did not seroconvert, suggesting these doses are too low to reliably induce infection. The main lesion in all clinically affected bats was meningoencephalitis associated with lyssavirus-positive neurons. Lyssavirus antigen was detected in tongue epithelium (5/11 infected bats) rather than in salivary gland epithelium (0/11), suggesting viral excretion via the tongue. Thus, intramuscular inoculation of 102.1 TCID50 of Lagos bat virus into straw-colored fruit bats is a suitable model for lyssavirus associated bat rabies in a natural reservoir host, and can help with the investigation of lyssavirus infection dynamics in bats.


Assuntos
Quirópteros/virologia , Lyssavirus , Infecções por Rhabdoviridae/veterinária , Animais , Reservatórios de Doenças , Raiva/veterinária , Raiva/virologia , Infecções por Rhabdoviridae/virologia
5.
PLoS Negl Trop Dis ; 12(3): e0006311, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29505617

RESUMO

Rabies is a fatal neurologic disease caused by lyssavirus infection. People are infected through contact with infected animals. The relative increase of human rabies acquired from bats calls for a better understanding of lyssavirus infections in their natural hosts. So far, there is no experimental model that mimics natural lyssavirus infection in the reservoir bat species. Lagos bat virus is a lyssavirus that is endemic in straw-colored fruit bats (Eidolon helvum) in Africa. Here we compared the susceptibility of these bats to three strains of Lagos bat virus (from Senegal, Nigeria, and Ghana) by intracranial inoculation. To allow comparison between strains, we ensured the same titer of virus was inoculated in the same location of the brain of each bat. All bats (n = 3 per strain) were infected, and developed neurological signs, and fatal meningoencephalitis with lyssavirus antigen expression in neurons. There were three main differences among the groups. First, time to death was substantially shorter in the Senegal and Ghana groups (4 to 6 days) than in the Nigeria group (8 days). Second, each virus strain produced a distinct clinical syndrome. Third, the spread of virus to peripheral tissues, tested by hemi-nested reverse transcriptase PCR, was frequent (3 of 3 bats) and widespread (8 to 10 tissues positive of 11 tissues examined) in the Ghana group, was frequent and less widespread in the Senegal group (3/3 bats, 3 to 6 tissues positive), and was rare and restricted in the Nigeria group (1/3 bats, 2 tissues positive). Centrifugal spread of virus from brain to tissue of excretion in the oral cavity is required to enable lyssavirus transmission. Therefore, the Senegal and Ghana strains seem most suitable for further pathogenesis, and for transmission, studies in the straw-colored fruit bat.


Assuntos
Encéfalo/patologia , Quirópteros/virologia , Lyssavirus/classificação , Lyssavirus/fisiologia , Raiva/veterinária , Animais , Anticorpos Antivirais/sangue , Reservatórios de Doenças , Interações Hospedeiro-Patógeno , Imuno-Histoquímica , Neurônios/patologia , Neurônios/virologia , Raiva/epidemiologia
6.
Ecol Evol ; 8(24): 12803-12820, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30619584

RESUMO

The Gambian epauletted fruit bat (Epomophorus gambianus) is an abundant species that roosts in both urban and rural settings. The possible role of E. gambianus as a reservoir host of zoonotic diseases underlines the need to better understand the species movement patterns. So far, neither observational nor phylogenetic studies have identified the dispersal range or behavior of this species. Comparative analyses of mitochondrial and nuclear markers from 20 localities across the known distribution of E. gambianus showed population panmixia, except for the populations in Ethiopia and southern Ghana (Accra and Ve-Golokwati). The Ethiopian population may be ancestral and is highly divergent to the species across the rest of its range, possibly reflecting isolation of an ancient colonization along an east-west axis. Mitochondrial haplotypes in the Accra population display a strong signature of a past bottleneck event; evidence of either an ancient or recent bottleneck using microsatellite data, however, was not detected. Demographic analyses identified population expansion in most of the colonies, except in the female line of descent in the Accra population. The molecular analyses of the colonies from Ethiopia and southern Ghana show gender dispersal bias, with the mitochondrial DNA fixation values over ten times those of the nuclear markers. These findings indicate free mixing of the species across great distances, which should inform future epidemiological studies.

7.
Mitochondrial DNA B Resour ; 1(1): 447-449, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-33473515

RESUMO

The Gambian epauletted fruit bat, Epomophorus gambianus, is widely distributed across sub-Saharan Africa. Its assembled and annotated mitochondrial genome (GenBank accession no. KT963027) is 16,702 bases in length, containing 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and two non-coding regions: the control region (D-loop) and the origin of light-strand replication (OL). The average base composition is 32.2% A; 27.6% C; 14% G; and 26.1% T. The mitogenome presented a structural composition greatly conserved between members of the Pteropodidae family.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...