Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1982: 39-59, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31172465

RESUMO

Determination of the structure of human neutrophil (PMN) flavocytochrome b (Cytb) is a necessary step for the understanding of the structure-function essentials of NADPH oxidase activity. This understanding is crucial for structure-driven therapeutic approaches addressing control of inflammation and infection. Our work on purification and sample preparation of Cytb has facilitated progress toward the goal of structure determination. Here we describe exploiting immunoaffinity purification of Cytb for initial examination of its size and shape by a combination of classical and cryoelectron microscopic (EM) methods. For these evaluations, we used conventional negative-stain transmission electron microscopy (TEM) to examine both detergent-solubilized Cytb as single particles and Cytb in phosphatidylcholine reconstituted membrane vesicles as densely packed random, partially ordered, and subcrystalline arrays. In preliminary trials, we also examined single particles by cryoelectron microscopy (cryoEM) methods. We conclude that Cytb in detergent and reconstituted in membrane is a relatively compact, symmetrical protein of about 100 Å in maximum dimension. The negative stain, preliminary cryoEM, and crude molecular models suggest that the protein is probably a heterotetramer of two p22phox and gp91phox subunits in both detergent micelles and membrane vesicles. This exploratory study also suggests that high-resolution 2D electron microscopic approaches may be accessible to human material collected from single donors.


Assuntos
Separação Celular/métodos , Grupo dos Citocromos b/metabolismo , Microscopia Eletrônica , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Neutrófilos/ultraestrutura , Anticorpos Monoclonais , Biomarcadores , Microscopia Crioeletrônica , Grupo dos Citocromos b/química , Grupo dos Citocromos b/isolamento & purificação , Estabilidade Enzimática , Humanos , Lipossomos/química , Lipossomos/metabolismo , Lipossomos/ultraestrutura , Microscopia Eletrônica/métodos , NADPH Oxidases/química , NADPH Oxidases/isolamento & purificação , Neutrófilos/imunologia
2.
J Leukoc Biol ; 97(1): 87-101, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25395303

RESUMO

Bacterial/mitochondrial fMLF analogs bind FPR1, driving accumulation/activation of PMN at sites of infection/injury, while promoting wound healing in epithelia. We quantified levels of UFPR1 and TFPR1 in isolated PMN by use of phosphosensitive NFPRb and phosphorylation-independent NFPRa antibodies. UFPR1 and total TFPR were assessed inflamed mucosa, observed in human IBD. In isolated PMN after fMLF stimulation, UFPR1 declined 70% ((fMLF)EC50 = 11 ± 1 nM; t1/2 = 15 s) and was stable for up to 4 h, whereas TFPR1 changed only slightly. Antagonists (tBoc-FLFLF, CsH) and metabolic inhibitor NaF prevented the fMLF-dependent UFPR1 decrease. Annexin A1 fragment Ac2-26 also induced decreases in UFPR1 ((Ac2-26)EC50 ∼ 3 µM). Proinflammatory agents (TNF-α, LPS), phosphatase inhibitor (okadaic acid), and G-protein activator (MST) modestly increased (fMLF)EC50, 2- to 4-fold, whereas PTX, Ca(2+) chelators (EGTA/BAPTA), H2O2, GM-CSF, ENA-78, IL-1RA, and LXA4 had no effect. Aggregation-inducing PAF, however, strongly inhibited fMLF-stimulated UFPR1 decreases. fMLF-driven PMN also demonstrated decreased UFPR1 after traversing monolayers of cultured intestinal epithelial cells, as did PMN in intestinal mucosal samples, demonstrating active inflammation from UC patients. Total TFPR remained high in PMN within inflamed crypts, migrating through crypt epithelium, and in the lamina propria-adjoining crypts, but UFPR1 was only observed at some peripheral sites on crypt aggregates. Loss of UFPR1 in PMN results from C-terminal S/T phosphorylation. Our results suggest G protein-insensitive, fMLF-dependent FPR1 phosphorylation in isolated suspension PMN, which may manifest in fMLF-driven transmigration and potentially, in actively inflamed tissues, except at minor discrete surface locations of PMN-containing crypt aggregates.


Assuntos
Inflamação/imunologia , Mucosa Intestinal/imunologia , Neutrófilos/imunologia , Receptores de Formil Peptídeo/metabolismo , Células Cultivadas , Imunofluorescência , Humanos , Immunoblotting , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Microscopia Confocal , Neutrófilos/metabolismo , Fosforilação
3.
Methods Mol Biol ; 1124: 413-26, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24504965

RESUMO

Human flavocytochrome b (Cyt b) is the core electron transferase of the NADPH oxidase in phagocytes and a number of other cell types. The oxidase complex generates superoxide, initiating production of a cascade of reactive oxygen species critical for the killing of infectious agents. Many fundamental questions still remain concerning its structural dynamics and electron transfer mechanisms. In particular, Cyt b structure/function correlates in the membrane have been relatively unstudied. In order to facilitate the direct analysis of Cyt b structural dynamics in the membrane, the following method provides rapid and efficient procedures for the affinity purification of Cyt b from isolated neutrophil membrane fractions and its functional reconstitution in purified lipid preparations. The protocol presented here contains some new optimized procedures that will facilitate Cyt b isolation and reconstitution. Additional methods are presented that facilitate examination of conformational dynamics of the membrane reconstituted purified Cyt b by fluorescence resonance energy transfer (FRET) as measured by steady-state and lifetime fluorescence techniques.


Assuntos
Grupo dos Citocromos b/isolamento & purificação , Grupo dos Citocromos b/metabolismo , NADPH Oxidases/isolamento & purificação , NADPH Oxidases/metabolismo , Fagócitos/enzimologia , Cromatografia de Afinidade/métodos , Grupo dos Citocromos b/química , Transferência Ressonante de Energia de Fluorescência , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , NADPH Oxidases/química , Fosfatidilcolinas/química , Conformação Proteica
4.
J Biol Chem ; 288(38): 27042-27058, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23873933

RESUMO

Accumulation, activation, and control of neutrophils at inflammation sites is partly driven by N-formyl peptide chemoattractant receptors (FPRs). Occupancy of these G-protein-coupled receptors by formyl peptides has been shown to induce regulatory phosphorylation of cytoplasmic serine/threonine amino acid residues in heterologously expressed recombinant receptors, but the biochemistry of these modifications in primary human neutrophils remains relatively unstudied. FPR1 and FPR2 were partially immunopurified using antibodies that recognize both receptors (NFPRa) or unphosphorylated FPR1 (NFPRb) in dodecylmaltoside extracts of unstimulated and N-formyl-Met-Leu-Phe (fMLF) + cytochalasin B-stimulated neutrophils or their membrane fractions. After deglycosylation and separation by SDS-PAGE, excised Coomassie Blue-staining bands (∼34,000 Mr) were tryptically digested, and FPR1, phospho-FPR1, and FPR2 content was confirmed by peptide mass spectrometry. C-terminal FPR1 peptides (Leu(312)-Arg(322) and Arg(323)-Lys(350)) and extracellular FPR1 peptide (Ile(191)-Arg(201)) as well as three similarly placed FPR2 peptides were identified in unstimulated and fMLF + cytochalasin B-stimulated samples. LC/MS/MS identified seven isoforms of Ala(323)-Lys(350) only in the fMLF + cytochalasin B-stimulated sample. These were individually phosphorylated at Thr(325), Ser(328), Thr(329), Thr(331), Ser(332), Thr(334), and Thr(339). No phospho-FPR2 peptides were detected. Cytochalasin B treatment of neutrophils decreased the sensitivity of fMLF-dependent NFPRb recognition 2-fold, from EC50 = 33 ± 8 to 74 ± 21 nM. Our results suggest that 1) partial immunopurification, deglycosylation, and SDS-PAGE separation of FPRs is sufficient to identify C-terminal FPR1 Ser/Thr phosphorylations by LC/MS/MS; 2) kinases/phosphatases activated in fMLF/cytochalasin B-stimulated neutrophils produce multiple C-terminal tail FPR1 Ser/Thr phosphorylations but have little effect on corresponding FPR2 sites; and 3) the extent of FPR1 phosphorylation can be monitored with C-terminal tail FPR1-phosphospecific antibodies.


Assuntos
N-Formilmetionina Leucil-Fenilalanina/farmacologia , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/metabolismo , Receptores de Formil Peptídeo/metabolismo , Citocalasina B/farmacologia , Humanos , N-Formilmetionina Leucil-Fenilalanina/metabolismo , Ativação de Neutrófilo/fisiologia , Neutrófilos/citologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Estrutura Terciária de Proteína , Receptores de Formil Peptídeo/agonistas , Receptores de Lipoxinas/metabolismo
5.
Arch Biochem Biophys ; 521(1-2): 24-31, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22430035

RESUMO

Phagocyte NADPH oxidases generate superoxide at high rates in defense against infectious agents, a process regulated by second messenger anionic lipids using incompletely understood mechanisms. We reconstituted the catalytic core of the human neutrophil NADPH oxidase, flavocytochrome b (Cyt b) in 99% phosphatidylcholine vesicles in order to correlate anionic lipid-dependent conformational changes in membrane-bound Cyt b and oxidase activity. The anionic lipid 10:0 phosphatidic acid (10:0 PA) specifically induced conformational changes in Cyt b as measured by a combination of fluorescence resonance energy transfer methods and size exclusion chromatography. The fluorescence lifetime of a complex between Cyt b and Cascade Blue-derivatized anti-p22(phox) antibody (CCB-CS9), increased after exposure to 10:PA by ∼50% of the change observed when the complex is dissociated, indicating a structural rearrangement of p22(phox) and/or the Cyt b heme prosthetic groups. Half of the quenching relaxation occurred at 10:0 PA concentrations permissive to less than 10% full NADPH oxidase activity, but saturated near the saturation in activity in a matched cell-free oxidase assay. We conclude that anionic lipids modulate the conformation of Cyt b in the membrane and suggest they may serve to modulate the structure of Cyt b as a control mechanism for the NADPH oxidase.


Assuntos
Grupo dos Citocromos b/química , Grupo dos Citocromos b/metabolismo , NADPH Oxidases/química , NADPH Oxidases/metabolismo , Fagócitos/efeitos dos fármacos , Fagócitos/metabolismo , Ácidos Fosfatídicos/farmacologia , Ativação Enzimática , Transferência Ressonante de Energia de Fluorescência , Humanos , Técnicas In Vitro , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ácidos Fosfatídicos/química , Conformação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Superóxidos/metabolismo
6.
J Immunol Methods ; 329(1-2): 201-7, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17996248

RESUMO

Human neutrophil flavocytochrome b (Cyt b) is a heterodimeric, integral membrane protein that generates high levels of superoxide in the multisubunit NADPH oxidase complex. Since Cyt b is currently isolated in limited quantities, improved methods for purification from low levels of starting membranes (from both neutrophils and other expressing cell types) are important for the analysis of structure and catalytic mechanism. In the present study, the epitope-mapped monoclonal antibody CS9 was coupled to Sepharose beads and used as an affinity matrix for single-step immunoaffinity purification of Cyt b. Following solubilization of both human neutrophil and PLB-985 membrane fractions in the nonionic detergent octylglucoside, Cyt b was absorbed on the CS9-Sepharose affinity matrix and purified protein was eluted under non-denaturing conditions with an epitope-mimicking peptide. The high efficiency of this isolation procedure allowed Cyt b to be reproducibly purified from readily obtainable levels of starting membrane fractions (9x10(8) cell equivalents of neutrophil membranes and 2x10(9) cell equivalents of PLB-985 membranes). Since Cyt b could be affinity-purified in the detergent octylglucoside, high-level functional reconstitution was carried out directly on elution fractions by simple addition of solubilized phospholipid and subsequent dialysis for detergent removal. To our knowledge, this study describes the most efficient method for generating purified, functionally-reconstituted Cyt b and should facilitate analyses that require a highly-defined NADPH oxidase system.


Assuntos
Anticorpos Monoclonais/metabolismo , Membrana Celular/enzimologia , Cromatografia de Afinidade , Cromatografia em Agarose , Grupo dos Citocromos b/isolamento & purificação , NADPH Oxidases/isolamento & purificação , Neutrófilos/enzimologia , Especificidade de Anticorpos , Domínio Catalítico , Linhagem Celular Tumoral , Membrana Celular/imunologia , Grupo dos Citocromos b/imunologia , Grupo dos Citocromos b/metabolismo , Detergentes/química , Epitopos , Glucosídeos/química , Humanos , Membranas Artificiais , NADPH Oxidases/imunologia , NADPH Oxidases/metabolismo , Neutrófilos/imunologia , Peptídeos/imunologia , Fosfolipídeos/química , Reprodutibilidade dos Testes , Solubilidade , Superóxidos/metabolismo
7.
Biochemistry ; 46(49): 14291-304, 2007 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-18004884

RESUMO

The heterodimeric, integral membrane protein flavocytochrome b (Cyt b) is the catalytic core of the phagocyte NADPH oxidase and generates superoxide which plays a critical role in host defense. To better define the activation of superoxide production by this multisubunit enzyme complex, Cyt b-specific monoclonal antibodies (mAbs) and the p47phox SH3 domains (p47SH3AB) were used in the present study as probes to map surface structure and conformational dynamics in human neutrophil Cyt b. In pull-down and co-immunoprecipitation studies with detergent-solubilized Cyt b, the oxidase-inhibitory mAb CS9 was shown to share an overlapping binding site with p47SH3AB on the C-terminal region of the p22phox subunit. Similar studies demonstrated a surprising lack of overlap between the mAb 44.1 and CS9/p47SH3AB binding sites, and they indicated that the oxidase-inhibitory mAb NL7 binds a region physically separated from the p22phox C-terminal domain. Resonance energy transfer and size exclusion chromatography confirmed the above results for functionally reconstituted Cyt b and provided evidence that binding of both mAb CS9 and p47SH3AB altered the conformation of Cyt b. Further support that binding of the p47phox SH3 domains modulates the structure of Cyt b was obtained using a cell-free assay system where p47SH3AB enhanced superoxide production in the presence of a p67phox (1-212)-Rac1(Q61L) fusion protein. Taken together, this study further characterizes the structure of human neutrophil Cyt b in both detergent micelles and reconstituted membrane bilayers, and it provides evidence that the cytosolic regulatory subunit p47phox modulates the conformation of Cyt b (in addition to serving as an adapter protein) during oxidase activation.


Assuntos
Grupo dos Citocromos b/química , NADPH Oxidases/química , NADPH Oxidases/metabolismo , Anticorpos Monoclonais , Sítios de Ligação de Anticorpos , Grupo dos Citocromos b/imunologia , Mapeamento de Epitopos , Humanos , NADPH Oxidases/imunologia , Conformação Proteica , Domínios de Homologia de src
8.
J Immunol ; 179(4): 2520-31, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17675514

RESUMO

The N-formyl peptide receptor (FPR), a G protein-coupled receptor that binds proinflammatory chemoattractant peptides, serves as a model receptor for leukocyte chemotaxis. Recombinant histidine-tagged FPR (rHis-FPR) was purified in lysophosphatidyl glycerol (LPG) by Ni(2+)-NTA agarose chromatography to >95% purity with high yield. MALDI-TOF mass analysis (>36% sequence coverage) and immunoblotting confirmed the identity as FPR. The rHis-FPR served as an immunogen for the production of 2 mAbs, NFPR1 and NFPR2, that epitope map to the FPR C-terminal tail sequences, 305-GQDFRERLI-313 and 337-NSTLPSAEVE-346, respectively. Both mAbs specifically immunoblotted rHis-FPR and recombinant FPR (rFPR) expressed in Chinese hamster ovary cells. NFPR1 also recognized recombinant FPRL1, specifically expressed in mouse L fibroblasts. In human neutrophil membranes, both Abs labeled a 45-75 kDa species (peak M(r) approximately 60 kDa) localized primarily in the plasma membrane with a minor component in the lactoferrin-enriched intracellular fractions, consistent with FPR size and localization. NFPR1 also recognized a band of M(r) approximately 40 kDa localized, in equal proportions to the plasma membrane and lactoferrin-enriched fractions, consistent with FPRL1 size and localization. Only NFPR2 was capable of immunoprecipitation of rFPR in detergent extracts. The recognition of rFPR by NFPR2 is lost after exposure of cellular rFPR to f-Met-Leu-Phe (fMLF) and regained after alkaline phosphatase treatment of rFPR-bearing membranes. In neutrophils, NFPR2 immunofluorescence was lost upon fMLF stimulation. Immunoblotting approximately 60 kDa species, after phosphatase treatment of fMLF-stimulated neutrophil membranes, was also enhanced. We conclude that the region 337-346 of FPR becomes phosphorylated after fMLF activation of rFPR-expressing Chinese hamster ovary cells and neutrophils.


Assuntos
Anticorpos Monoclonais/química , Epitopos/química , Neutrófilos/química , Processamento de Proteína Pós-Traducional , Receptores de Formil Peptídeo/química , Animais , Anticorpos Monoclonais/imunologia , Células CHO , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/imunologia , Membrana Celular/metabolismo , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/genética , Quimiotaxia/imunologia , Cromatografia de Afinidade , Cricetinae , Cricetulus , Mapeamento de Epitopos , Epitopos/genética , Epitopos/imunologia , Fibroblastos/imunologia , Fibroblastos/metabolismo , Expressão Gênica , Humanos , Lactoferrina/química , Lactoferrina/genética , Lactoferrina/imunologia , Lactoferrina/metabolismo , Lisofosfolipídeos/química , Camundongos , Modelos Imunológicos , N-Formilmetionina Leucil-Fenilalanina/análogos & derivados , N-Formilmetionina Leucil-Fenilalanina/química , N-Formilmetionina Leucil-Fenilalanina/imunologia , N-Formilmetionina Leucil-Fenilalanina/metabolismo , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/imunologia , Estrutura Terciária de Proteína/genética , Receptores de Formil Peptídeo/genética , Receptores de Formil Peptídeo/imunologia , Receptores de Formil Peptídeo/isolamento & purificação , Receptores de Formil Peptídeo/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Spodoptera
9.
J Biol Chem ; 281(48): 37045-56, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17015440

RESUMO

The catalytic core of the phagocyte NADPH oxidase is a heterodimeric integral membrane protein (flavocytochrome b (Cyt b)) that generates superoxide and initiates a cascade of reactive oxygen species critical for the host inflammatory response. In order to facilitate structural characterization, the present study reports the first direct analysis of human phagocyte Cyt b by matrix-assisted laser desorption/ionization and nanoelectrospray mass spectrometry. Mass analysis of in-gel tryptic digest samples provided 73% total sequence coverage of the gp91(phox) subunit, including three of the six proposed transmembrane domains. Similar analysis of the p22(phox) subunit provided 72% total sequence coverage, including assignment of the hydrophobic N-terminal region and residues that are polymorphic in the human population. To initiate mass analysis of Cyt b post-translational modifications, the isolated gp91(phox) subunit was subject to sequential in-gel digestion with Flavobacterium meningosepticum peptide N-glycosidase F and trypsin, with matrix-assisted laser desorption/ionization and liquid chromatography-mass spectrometry/mass spectrometry used to demonstrate that Asn-132, -149, and -240 are genuinely modified by N-linked glycans in human neutrophils. Since the PLB-985 cell line represents an important model system for analysis of the NADPH oxidase, methods were developed for the purification of Cyt b from PLB-985 membrane fractions in order to confirm the appropriate modification of N-linked glycosylation sites on the recombinant gp91(phox) subunit. This study reports extensive sequence coverage of the integral membrane protein Cyt b by mass spectrometry and provides analytical methods that will be useful for evaluating posttranslational modifications involved in the regulation of superoxide production.


Assuntos
Grupo dos Citocromos b/química , Grupo dos Citocromos b/fisiologia , NADPH Oxidases/química , NADPH Oxidases/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Chryseobacterium/metabolismo , Glicosilação , Humanos , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/química , Glicoproteínas de Membrana/metabolismo , Dados de Sequência Molecular , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Fagocitose , Proteínas Recombinantes/química , Superóxidos/metabolismo , Tripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...