Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 17(10): e202301452, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38224562

RESUMO

Control over product selectivity of the electrocatalytic CO2 reduction reaction (CO2RR) is a crucial challenge for the sustainable production of carbon-based chemical feedstocks. In this regard, single-atom catalysts (SACs) are promising materials due to their tunable coordination environments, which could enable tailored catalytic activities and selectivities, as well as new insights into structure-activity relationships. However, direct evidence for selectivity control via systematic tuning of the SAC coordination environment is scarce. In this work, we have synthesized two differently coordinated Bi SACs anchored to the same host material (carbon black) and characterized their CO2RR activities and selectivities. We find that oxophilic, oxygen-coordinated Bi atoms produce HCOOH, while nitrogen-coordinated Bi atoms generate CO. Importantly, use of the same support material assured that alternation of the coordination environment is the dominant factor for controlling the CO2RR product selectivity. Overall, this work demonstrates the structure-activity relationship of Bi SACs, which can be utilized to establish control over CO2RR product distributions, and highlights the promise for engineering atomic coordination environments of SACs to tune reaction pathways.

2.
J Mater Chem A Mater ; 10(22): 12026-12034, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35757488

RESUMO

We demonstrate a facile approach to solution-based synthesis of wafer-scale epitaxial bismuth vanadate (BiVO4) thin films by spin-coating on yttria-stabilized zirconia. Epitaxial growth proceeds via solid-state transformation of initially formed polycrystalline films, driven by interface energy minimization. The (010)-oriented BiVO4 films are smooth and compact, possessing remarkably high structural quality across complete 2'' wafers. Optical absorption is characterized by a sharp onset with a low sub-band gap response, confirming that the structural order of the films results in correspondingly high optoelectronic quality. This combination of structural and optoelectronic quality enables measurements that reveal a strong optical anisotropy of BiVO4, which leads to significantly increased in-plane optical constants near the fundamental band edge that are of particular importance for maximizing light harvesting in semiconductor photoanodes. Temperature-dependent transport measurements confirm a thermally activated hopping barrier of ∼570 meV, consistent with small electron polaron conduction. This simple approach for synthesis of high-quality epitaxial BiVO4, without the need for complex deposition equipment, enables a broadly accessible materials base to accelerate research aimed at understanding and optimizing photoelectrochemical energy conversion mechanisms.

3.
Mater Horiz ; 8(6): 1744-1755, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846504

RESUMO

The binary Ta-N chemical system includes several compounds with notable prospects in microelectronics, solar energy harvesting, and catalysis. Among these, metallic TaN and semiconducting Ta3N5 have garnered significant interest, in part due to their synthetic accessibility. However, tantalum sesquinitride (Ta2N3) possesses an intermediate composition and largely unknown physical properties owing to its metastable nature. Herein, Ta2N3 is directly deposited by reactive magnetron sputtering and its optoelectronic properties are characterized. Combining these results with density functional theory provides insights into the critical role of oxygen in both synthesis and electronic structure. While the inclusion of oxygen in the process gas is critical to Ta2N3 formation, the resulting oxygen incorporation in structural vacancies drastically modifies the free electron concentration in the as-grown material, thus leading to a semiconducting character with a 1.9 eV bandgap. Reducing the oxygen impurity concentration via post-synthetic ammonia annealing increases the conductivity by seven orders of magnitude and yields the metallic characteristics of a degenerate semiconductor, consistent with theoretical predictions. Thus, this inverse oxygen doping approach - by which the carrier concentration is reduced by the oxygen impurity - offers a unique opportunity to tailor the optoelectronic properties of Ta2N3 for applications ranging from photochemical energy conversion to advanced photonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...