Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NMR Biomed ; 35(5): e4656, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34962689

RESUMO

In this study, the performance of an integrated body-imaging array for 7 T with 32 radiofrequency (RF) channels under consideration of local specific absorption rate (SAR), tissue temperature, and thermal dose limits was evaluated and the imaging performance was compared with a clinical 3 T body coil. Thirty-two transmit elements were placed in three rings between the bore liner and RF shield of the gradient coil. Slice-selective RF pulse optimizations for B1 shimming and spokes were performed for differently oriented slices in the body under consideration of realistic constraints for power and local SAR. To improve the B1+ homogeneity, safety assessments based on temperature and thermal dose were performed to possibly allow for higher input power for the pulse optimization than permissible with SAR limits. The results showed that using two spokes, the 7 T array outperformed the 3 T birdcage in all the considered regions of interest. However, a significantly higher SAR or lower duty cycle at 7 T is necessary in some cases to achieve similar B1+ homogeneity as at 3 T. The homogeneity in up to 50 cm-long coronal slices can particularly benefit from the high RF shim performance provided by the 32 RF channels. The thermal dose approach increases the allowable input power and the corresponding local SAR, in one example up to 100 W/kg, without limiting the exposure time necessary for an MR examination. In conclusion, the integrated antenna array at 7 T enables a clinical workflow for body imaging and comparable imaging performance to a conventional 3 T clinical body coil.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Temperatura
2.
NMR Biomed ; 34(7): e4515, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33942938

RESUMO

The aim of the current study was to investigate the performance of integrated RF transmit arrays with high channel count consisting of meander microstrip antennas for body imaging at 7 T and to optimize the position and number of transmit elements. RF simulations using multiring antenna arrays placed behind the bore liner were performed for realistic exposure conditions for body imaging. Simulations were performed for arrays with as few as eight elements and for arrays with high channel counts of up to 48 elements. The B1+ field was evaluated regarding the degrees of freedom for RF shimming in the abdomen. Worst-case specific absorption rate (SARwc ), SAR overestimation in the matrix compression, the number of virtual observation points (VOPs) and SAR efficiency were evaluated. Constrained RF shimming was performed in differently oriented regions of interest in the body, and the deviation from a target B1+ field was evaluated. Results show that integrated multiring arrays are able to generate homogeneous B1+ field distributions for large FOVs, especially for coronal/sagittal slices, and thus enable body imaging at 7 T with a clinical workflow; however, a low duty cycle or a high SAR is required to achieve homogeneous B1+ distributions and to exploit the full potential. In conclusion, integrated arrays allow for high element counts that have high degrees of freedom for the pulse optimization but also produce high SARwc , which reduces the SAR accuracy in the VOP compression for low-SAR protocols, leading to a potential reduction in array performance. Smaller SAR overestimations can increase SAR accuracy, but lead to a high number of VOPs, which increases the computational cost for VOP evaluation and makes online SAR monitoring or pulse optimization challenging. Arrays with interleaved rings showed the best results in the study.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Ondas de Rádio , Simulação por Computador , Humanos , Masculino , Modelos Biológicos
3.
Eur Radiol Exp ; 4(1): 10, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32030499

RESUMO

BACKGROUND: To evaluate feasibility and diagnostic performance of clinical 7-T magnetic resonance imaging (MRI) of the shoulder. METHODS: Eight patients with suspected lesions of the rotator cuff underwent 7-T MRI before arthroscopy. Image quality was scored for artifacts, B1+ inhomogeneities, and assessability of anatomical structures. A structured radiological report was compared to arthroscopy. In four patients, a visual comparison with pre-existing 1.5-T examinations was performed. RESULTS: Regarding image quality, the majority of the sequences reached values above the middle of each scoring scale. Fat-saturated proton density sequences showed least artifacts and best structure assessability. The most homogenous B1+ field was reached with gradient-echo sequences. Arthroscopy did not confirm tendinopathy/partial tear of supraspinatus in 5/8 patients, of subscapularis in 5/6, and of infraspinatus in one patient; only a partial lesion of the subscapularis tendon was missed. Pathologic findings of long bicipital tendon, acromioclavicular joint, glenohumeral cartilage, labrum, and subacromial subdeltoideal bursa were mainly confirmed; exceptions were one lesion of the long bicipital tendon, one subacromial bursitis, and one superior glenoid labrum anterior-to-posterior lesion, missed on 7-T MRI. Evaluating all structures together, sensitivity was 86%, and specificity 74%. A better contrast and higher image resolution was noted in comparison to previous 1.5-T examinations. CONCLUSIONS: 7-T MRI of the shoulder with diagnostic image quality is feasible. Overrating of tendon signal alterations was the main limitation. Although the diagnostic performance did not reach the current results of 3-T MRI, our study marks the way to implement clinical 7-T MRI of the shoulder.


Assuntos
Imageamento por Ressonância Magnética/métodos , Lesões do Manguito Rotador/diagnóstico por imagem , Adulto , Artefatos , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade
4.
PLoS One ; 14(9): e0222452, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31513637

RESUMO

PURPOSE: A 32-channel parallel transmit (pTx) add-on for 7 Tesla whole-body imaging is presented. First results are shown for phantom and in-vivo imaging. METHODS: The add-on system consists of a large number of hardware components, including modulators, amplifiers, SAR supervision, peripheral devices, a control computer, and an integrated 32-channel transmit/receive body array. B1+ maps in a phantom as well as B1+ maps and structural images in large volunteers are acquired to demonstrate the functionality of the system. EM simulations are used to ensure safe operation. RESULTS: Good agreement between simulation and experiment is shown. Phantom and in-vivo acquisitions show a field of view of up to 50 cm in z-direction. Selective excitation with 100 kHz sampling rate is possible. The add-on system does not affect the quality of the original single-channel system. CONCLUSION: The presented 32-channel parallel transmit system shows promising performance for ultra-high field whole-body imaging.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Desenho de Equipamento , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído
5.
Med Phys ; 46(9): 3893-3905, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31274201

RESUMO

PURPOSE: In vivo 1 H and 31 P magnetic resonance spectroscopic imaging (MRSI) provide complementary information on the biology of prostate cancer. In this work we demonstrate the feasibility of performing multiparametric imaging (mpMRI) and 1 H and 31 P spectroscopic imaging of the prostate using a 31 P and 1 H endorectal radiofrequency coil (ERC) in combination with a multitransmit body array at 7 Tesla (T). METHODS: An ERC with a 31 P transceiver loop coil and 1 H receive (Rx) asymmetric microstrip (31 P/1 H ERC) was designed, constructed and tested in combination with an external 8-channel 1 H transceiver body array coil (8CH). Electromagnetic field simulations and measurements and in vivo temperature measurements of the ERC were performed for safety validation. In addition, the signal-to-noise (SNR) benefit of the 1 H microstrip with respect to the 8CH was evaluated. Finally, the feasibility of the setup was tested in one volunteer and three patients with prostate cancer by performing T2 -weighted and diffusion-weighted imaging in combination with 1 H and 31 P spectroscopic imaging. RESULTS: Electromagnetic field simulations of the 31 P loop coil showed no differences in the E- and B-fields of the 31 P/1 H ERC compared with a previously safety validated ERC without 1 H microstrip. The hotspot of the specific absorption rate (SAR) at the feed point of the 31 P/1 H ERC loop coil was 9.42 W/kg when transmitting on 31 P at 1 W. Additional in vivo measurements showed a maximum temperature increase at the SAR hotspot of 0.7°C over 6 min on 31 P at 1.9 W transmit (Tx) power, indicating safe maximum power levels. When transmitting with the external 1 H body array at 40W for 2:30 min, the temperature increase around the ERC was < 0.3°C. Up to 3.5 cm into the prostate the 1 H microstrip of the ERC provided higher SNR than the 8CH. The total coil combination allowed acquisition of an mpMRI protocol and the assessment of 31 P and 1 H metabolites of the prostate in all test subjects. CONCLUSION: We developed a setup with a 31 P transceiver and 1 H Rx endorectal coil in combination with an 8-channel transceiver external body array coil and demonstrated its safety and feasibility for obtaining multiparametric imaging and 1 H and 31 P MRSI at 7T in patients with prostate cancer within one MR examination.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Próstata/diagnóstico por imagem , Ondas de Rádio , Reto , Adulto , Idoso , Desenho de Equipamento , Estudos de Viabilidade , Humanos , Masculino , Pessoa de Meia-Idade , Segurança , Razão Sinal-Ruído , Temperatura
6.
Eur Radiol ; 29(12): 6529-6538, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31201525

RESUMO

PURPOSE: To evaluate the technical feasibility of high-resolution USPIO-enhanced magnetic resonance imaging of pelvic lymph nodes (LNs) at ultrahigh magnetic field strength. MATERIALS AND METHODS: The ethics review board approved this study and written informed consent was obtained from all patients. Three patients with rectal cancer and three selected patients with (recurrent) prostate cancer were examined at 7-T 24-36 h after intravenous ferumoxtran-10 administration; rectal cancer patients also received a 3-T MRI. Pelvic LN imaging was performed using the TIAMO technique in combination with water-selective multi-GRE imaging and lipid-selective GRE imaging with a spatial resolution of 0.66 × 0.66 × 0.66mm3. T2*-weighted images of the water-selective imaging were computed from the multi-GRE images at TE = 0, 8, and 14 ms and used for the assessment of USPIO uptake. RESULTS: High-resolution 7-T MR gradient-echo imaging was obtained robustly in all patients without suffering from RF-related signal voids. USPIO signal decay in LNs was visualized using computed TE imaging at TE = 8 ms and an R2* map derived from water-selective imaging. Anatomically, LNs were identified on a combined reading of computed TE = 0 ms images from water-selective scans and images from lipid-selective scans. A range of 3-48 LNs without USPIO signal decay was found per patient. These LNs showed high signal intensity on computed TE = 8 and 14 ms imaging and low R2* (corresponding to high T2*) values on the R2* map. CONCLUSION: USPIO-enhanced MRI of the pelvis at 7-T is technically feasible and offers opportunities for detecting USPIO uptake in normal-sized LNs, due to its high intrinsic signal-to-noise ratio and spatial resolution. KEY POINTS: • USPIO-enhanced MRI at 7-T can indicate USPIO uptake in lymph nodes based on computed TE images. • Our method promises a high spatial resolution for pelvic lymph node imaging.


Assuntos
Meios de Contraste , Dextranos , Aumento da Imagem/métodos , Linfonodos/diagnóstico por imagem , Metástase Linfática/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Idoso , Estudos de Viabilidade , Feminino , Humanos , Linfonodos/patologia , Metástase Linfática/patologia , Masculino , Pessoa de Meia-Idade , Pelve/patologia , Reprodutibilidade dos Testes
7.
Magn Reson Med ; 82(2): 796-810, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30924181

RESUMO

PURPOSE: A 16-channel receive (16Rx) radiofrequency (RF) array for 7T ultra-high field body MR imaging is presented. The coil is evaluated in conjunction with a 16-channel transmit/receive (16TxRx) coil and additionally with a 32-channel transmit/receive (32TxRx) remote body coil for RF transmit and serving as receive references. METHODS: The 16Rx array consists of 16 octagonal overlapping loops connected to custom-built detuning boards with preamplifiers. Performance metrics like noise correlation, g-factors, and signal-to-noise ratio gain were compared between 4 different RF coil configurations. In vivo body imaging was performed in volunteers using radiofrequency shimming, time interleaved acquisition of modes (TIAMO), and 2D spatially selective excitation using parallel transmit (pTx) in the spine. RESULTS: Lower g-factors were obtained when using the 16Rx coil in addition to the 16TxRx array coil configuration versus the 16TxRx array alone. Distinct signal-to-noise ratio gain using the 16Rx coil could be demonstrated in the spine region both for a comparison with the 16TxRx coil (>50% gain) in vivo and the 32TxRx coil (>240% gain) in a phantom. The 16Rx coil was successfully applied to improve anatomical imaging in the abdomen and 2D spatially selective excitation in the spine of volunteers. CONCLUSION: The novel 16-channel Rx-array as an add-on to multichannel TxRx RF coil configurations provides increased signal-to-noise ratio, lower g-factors, and thus improves 7T ultra-high field body MR imaging.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Coluna Vertebral/diagnóstico por imagem , Adulto , Desenho de Equipamento , Humanos , Masculino , Imagens de Fantasmas
8.
Med Phys ; 45(7): 2978-2990, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29679498

RESUMO

PURPOSE: In this work, a combined body coil array with eight transmit/receive (Tx/Rx) meander elements and with 24 receive-only (Rx) loops (8Tx/32Rx) was developed and evaluated in comparison with an 8-channel transmit/receive body array (8Tx/Rx) based on meander elements serving as the reference standard. METHODS: Systematic evaluation of the RF array was performed on a body-sized phantom. Body imaging at 7T was performed in six volunteers in the body regions pelvis, abdomen, and heart. Coil characteristics such as signal-to-noise ratio, acceleration capability, g-factors, S-parameters, noise correlation, and B1+ maps were assessed. Safety was ensured by numerical simulations using a coil model validated by dosimetric field measurements. RESULTS: Meander elements and loops are intrinsically well decoupled with a maximum coupling value of -20.5 dB. Safe use of the 8Tx/32Rx array could be demonstrated. High gain in signal-to-noise ratio (33% in the subject's center) could be shown for the 8Tx/32Rx array compared to the 8Tx/Rx array. Improvement in acceleration capability in all investigations could be demonstrated. For example, the 8Tx/32Rx array provides lower g-factors in the right-left and anterior-posterior directions with R = 3 undersampling as compared to the 8Tx/Rx array using R = 2. Both arrays are very similar regarding their RF transmit performance. Excellent image quality in the investigated body regions could be achieved with the 8Tx/32Rx array. CONCLUSION: In this work, we show that a combination of eight meander elements and 24 loop receive elements is possible without impeding transmit performance. Improved SNR and g-factor performance compared to an RF array without these loops is demonstrated. Body MRI at 7T with the 8Tx/32Rx array could be accomplished in the heart, abdomen, and pelvis with excellent image quality.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Ondas de Rádio , Desenho de Equipamento , Segurança , Razão Sinal-Ruído
10.
Magn Reson Med ; 79(2): 1116-1126, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28394080

RESUMO

PURPOSE: In this work, 22 configurations for remote radiofrequency (RF) coil arrays consisting of different transmit element designs for 7 Tesla (T) ultrahigh-field MRI are compared by numerical simulations. METHODS: Investigated transmit RF element types are rectangular loops, micro striplines, micro striplines with meanders, 250-mm shielded dipoles with meanders, and lambda over two dipoles with and without shield. These elements are combined in four different configurations of circumferential RF body arrays with four or eight transmit elements each. Comparisons included coupling behavior, degrees of freedom offered by the individual transmit patterns, and metrics like power and specific absorption rate efficiency. RESULTS: Coupling between neighboring RF elements is elevated (up to -7 dB) for all arrays with eight elements, whereas it is below -25 dB for arrays with only four elements. The cumulative sum of singular values points out highest degrees of freedom for the central transversal, reduced values in the central coronal, and minimum values in the sagittal slice. Concerning power and SAR efficiency, eight lambda over two dipoles are most advantageous. CONCLUSIONS: Among the investigated remote arrays and parameters, a combination of eight dipoles appears to be most favorable for potential use in 7T body MRI. Magn Reson Med 79:1116-1126, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Simulação por Computador , Desenho de Equipamento , Humanos , Ondas de Rádio
11.
Med Phys ; 44(12): 6195-6208, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28976586

RESUMO

PURPOSE: In this work, we present an 8-channel transceiver (Tx/Rx) 7-channel receive (Rx) radiofrequency (RF) coil setup for 7 T ultrahigh-field MR imaging of the shoulder. METHODS: A C-shaped 8-channel Tx/Rx coil was combined with an anatomically close-fitting 7-channel Rx-only coil. The safety and performance parameters of this coil setup were evaluated on the bench and in phantom experiments. The 7 T MR imaging performance of the shoulder RF coil setup was evaluated in in vivo measurements using a 3D DESS, a 2D PD-weighted TSE sequence, and safety supervision based on virtual observation points. RESULTS: Distinct SNR gain and acceleration capabilities provided by the additional 7-channel Rx-only coil were demonstrated in phantom and in vivo measurements. The power efficiency indicated good performance of each channel and a maximum B1+ of 19 µT if the hardware RF power limits of the MR system were exploited. MR imaging of the shoulder was demonstrated with clinically excellent image quality and submillimeter spatial resolution. CONCLUSIONS: The presented 8-channel transceiver 7-channel receive RF coil setup was successfully applied for in vivo 7 T MRI of the shoulder providing a clear SNR gain vs the transceiver array without the additional receive array. Homogeneous images across the shoulder region were obtained using 8-channel subject-specific phase-only RF shimming.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Ondas de Rádio , Ombro/diagnóstico por imagem , Razão Sinal-Ruído , Humanos , Imagens de Fantasmas
12.
Med Phys ; 42(8): 4542-52, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26233183

RESUMO

PURPOSE: In this work, the transmit performance and interelement coupling characteristics of radio frequency (RF) antenna microstrip line elements are examined in simulations and measurements. METHODS: The initial point of the simulations is a microstrip line element loaded with a phantom. Meander structures are then introduced at the end of the element. The size of the meanders is increased in fixed steps and the magnetic field is optimized. In continuative simulations, the coupling between identical elements is evaluated for different element spacing and loading conditions. Verification of the simulation results is accomplished in measurements of the coupling between two identical elements for four different meander sizes. Image acquisition on a 7 T magnetic resonance imaging (MRI) system provides qualitative and quantitative comparisons to confirm the simulation results. RESULTS: Simulations point out an optimum range of meander sizes concerning coupling in all chosen geometric setups. Coupling measurement results are in good agreement with the simulations. Qualitative and quantitative comparisons of the acquired MRI images substantiate the coupling results. CONCLUSIONS: The coupling between coil elements in RF antenna arrays consisting of the investigated element types can be optimized under consideration of the central magnetic field strength or efficiency depending on the desired application.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Microtecnologia/instrumentação , Simulação por Computador , Desenho de Equipamento , Campos Magnéticos , Imagens de Fantasmas , Ondas de Rádio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...