Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Environ Sci Ecotechnol ; 21: 100392, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38434492

RESUMO

Activated carbon is employed for the adsorption of organic micropollutants (OMPs) from water, typically present in concentrations ranging from ng L-1 to µg L-1. However, the efficacy of OMP removal is considerably deteriorated due to competitive adsorption from background dissolved organic matter (DOM), present at substantially higher concentrations in mg L-1. Interpreting the characteristics of competitive DOM is crucial in predicting OMP adsorption efficiencies across diverse natural waters. Molecular weight (MW), aromaticity, and polarity influence DOM competitiveness. Although the aromaticity-related metrics, such as UV254, of low MW DOM were proposed to correlate with DOM competitiveness, the method suffers from limitations in understanding the interplay of polarity and aromaticity in determining DOM competitiveness. Here, we elucidate the intricate influence of aromaticity and polarity in low MW DOM competition, spanning from a fraction level to a compound level, by employing direct sample injection liquid chromatography coupled with ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry. Anion exchange resin pre-treatment eliminated 93% of UV254-active DOM, predominantly aromatic and polar DOM, and only minimally alleviated DOM competition. Molecular characterization revealed that nonpolar molecular formulas (constituting 26% PAC-adsorbable DOM) with medium aromaticity contributed more to the DOM competitiveness. Isomer-level analysis indicated that the competitiveness of highly aromatic LMW DOM compounds was strongly counterbalanced by increased polarity. Strong aromaticity-derived π-π interaction cannot facilitate the competitive adsorption of hydrophilic DOM compounds. Our results underscore the constraints of depending solely on aromaticity-based approaches as the exclusive interpretive measure for DOM competitiveness. In a broader context, this study demonstrates an effect-oriented DOM analysis, elucidating counterbalancing interactions of DOM molecular properties from fraction to compound level.

2.
Water Res ; 252: 121233, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330719

RESUMO

Long-term consumption of groundwater containing elevated levels of arsenic (As) can have severe health consequences, including cancer. To effectively remove As, conventional treatment technologies require expensive chemical oxidants to oxidise neutral arsenite (As(III)) in groundwater to negatively charged arsenate (As(V)), which is more easily removed. Rapid sand filter beds used in conventional aeration-filtration to treat anaerobic groundwater can naturally oxidise As(III) through biological processes but require an additional step to remove the generated As(V), adding complexity and cost. This study introduces a novel approach where As(V), produced through biological As(III) oxidation in a sand filter, is effectively removed within the same filter by embedding and operating an iron electrocoagulation (FeEC) system inside the filter. Operating FeEC within the biological filter achieved higher As(III) removal (81 %) compared to operating FeEC in the filter supernatant (67 %). This performance was similar to an analogous embedded-FeEC system treating As(V)-contaminated water (85 %), confirming the benefits of incorporating FeEC in a biological bed for comparable As(III) and As(V) removal. However, operating FeEC in the sand matrix consumed more energy (14 Wh/m3) compared to FeEC operated in a water matrix (7 Wh/m3). The efficiency of As removal increased and energy requirements decreased in such embedded-FeEC systems by deep-bed infiltration of Fe(III)-precipitates, which can be controlled by adjusting flow rate and pH. This study is one of the first to demonstrate the feasibility of embedding FeEC systems in sand filters for groundwater arsenic removal. Such systems capitalise on biological As(III) oxidation in aeration-filtration, effectively eliminating As(V) within the same setup without the need for chemicals or major modifications.


Assuntos
Arsênio , Água Potável , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Compostos Férricos , Arsênio/análise , Poluentes Químicos da Água/análise , Água Potável/análise , Eletrocoagulação
3.
Membranes (Basel) ; 14(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38248712

RESUMO

Sodium hypochlorite (NaClO) is widely used for the chemical cleaning of fouled ultrafiltration (UF) membranes. Various studies performed on polymeric membranes demonstrate that long-term (>100 h) exposure to NaClO deteriorates the physicochemical properties of the membranes, leading to reduced performance and service life. However, the effect of NaClO cleaning on ceramic membranes, particularly the number of cleaning cycles they can undergo to alleviate irreversible fouling, remains poorly understood. Silicon carbide (SiC) membranes have garnered widespread attention for water and wastewater treatment, but their chemical stability in NaClO has not been studied. Low-pressure chemical vapor deposition (LP-CVD) provides a simple and economical route to prepare/modify ceramic membranes. As such, LP-CVD facilitates the preparation of SiC membranes: (a) in a single step; and (b) at much lower temperatures (700-900 °C) in comparison with sol-gel methods (ca. 2000 °C). In this work, SiC ultrafiltration (UF) membranes were prepared via LP-CVD at two different deposition temperatures and pressures. Subsequently, their chemical stability in NaClO was investigated over 200 h of aging. Afterward, the properties and performance of as-prepared SiC UF membranes were evaluated before and after aging to determine the optimal deposition conditions. Our results indicate that the SiC UF membrane prepared via LP-CVD at 860 °C and 100 mTorr exhibited excellent resistance to NaClO aging, while the membrane prepared at 750 °C and 600 mTorr significantly deteriorated. These findings not only highlight a novel preparation route for SiC membranes in a single step via LP-CVD, but also provide new insights about the careful selection of LP-CVD conditions for SiC membranes to ensure their long-term performance and robustness under harsh chemical cleaning conditions.

4.
Heliyon ; 9(12): e22577, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38046171

RESUMO

The present study investigated the utilization of blood clam shells as a potential substitute for conventional media, as well as the influence of the acclimation time on the efficacy of an intermittent slow sand filter (ISSF) in the treatment of real domestic wastewater. ISSF was operated with 16 h on and 8 h off, focusing on the parameters of turbidity, ammonia, and phosphate. Two media combinations (only blood clam shells [CC] and sand + blood clam shells [SC]) were operated under two different acclimatization periods (14 and 28 d). Results showed that SC medium exhibited significantly higher removal of turbidity (p < 0.05) as compared to CC medium (45.99 ± 26.84 % vs. 3.79 ± 9.35 %), while CC exhibited slightly higher (p > 0.05) removal of ammonia (23.12 ± 20.2 % vs. 16.77 ± 16.8 %) and phosphate (18.03 ± 11.96 % vs 13.48 ± 12 %). Comparing the acclimatization periods, the 28 d of acclimatization period showed higher overall performances than the 14 d. Further optimizations need to be conducted to obtain an effluent value below the national permissible limit, since the ammonia and phosphate parameters are still slightly higher. SEM analysis confirmed the formation of biofilm on both mediums after 28 d of acclimatization; with further analysis of schmutzdecke formation need to be carried out to enrich the results.

5.
Water Res ; 223: 119007, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36044797

RESUMO

Groundwater contaminated with arsenic (As) must be treated prior to drinking, as human exposure to As at toxic levels can cause various diseases including cancer. Conventional aeration-filtration applied to anaerobic arsenite (As(III)) contaminated groundwater can remove As(III) by co-oxidizing native iron (Fe(II)) and As(III) with oxygen (O2). However, the As(III) removal efficiency of conventional aeration can be low, in part, because of incomplete As(III) oxidation to readily-sorbed arsenate (As(V)). In this work, we investigated a new approach to enhance As(III) co-removal with native Fe(II) by the anaerobic addition of hydrogen peroxide (H2O2) prior to aeration. Experiments were performed to co-oxidize Fe(II) and As(III) with H2O2 (anaerobically), O2 (aerobically), and by sequentially adding of H2O2 and O2. Aqueous As(III) and As(V) measurements after the reaction were coupled with solid-phase speciation by Fe and As K-edge X-ray absorption spectroscopy (XAS). We found that complete anaerobic oxidation of 100 µM Fe(II) with 100 µM H2O2 resulted in co-removal of 95% of 7 µM As(III) compared to 44% with 8.0-9.0 mg/L dissolved O2. Furthermore, we found that with 100 µM Fe(II), the initial Fe(II):H2O2 ratio was a critical parameter to remove 7 µM As(III) to below the 10 µg/L (0.13 µM) WHO guideline, where ratios of 1:4 (mol:mol) Fe(II):H2O2 led to As(III) removal matching that of 7 µM As(V). The improved As(III) removal with H2O2 was found to occur partly because of the well-established enhanced efficiency of As(III) oxidation in Fe(II)+H2O2 systems relatively to Fe(II)+O2 systems. However, the XAS results unambiguously demonstrated that a large factor in the improved As(III) removal was also due to a systematic decrease in crystallinity, and thus increase in specific surface area, of the generated Fe(III) (oxyhydr)oxides from lepidocrocite in the Fe(II)+O2 system to poorly-ordered Fe(III) precipitates in the Fe(II)+H2O2 system. The combined roles of H2O2 (enhanced As(III) oxidation and structural modification) can be easily overlooked when only aqueous species are measured, but this dual impact must be considered for accurate predictions of As removal in groundwater treatment.


Assuntos
Arsênio , Arsenitos , Água Subterrânea , Poluentes Químicos da Água , Arseniatos , Arsênio/química , Arsenitos/química , Compostos Férricos/química , Compostos Ferrosos/química , Água Subterrânea/química , Humanos , Peróxido de Hidrogênio/química , Ferro/química , Oxirredução , Óxidos/química , Oxigênio , Poluentes Químicos da Água/química
6.
Water Res ; 216: 118267, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35306459

RESUMO

Ceramic membranes have drawn increasing attention in oily wastewater treatment as an alternative to their traditional polymeric counterparts, yet persistent membrane fouling is still one of the largest challenges. Particularly, little is known about ceramic membrane fouling by oil-in-water (O/W) emulsions in constant flux filtration modes. In this study, the effects of emulsion chemistry (surfactant concentration, pH, salinity and Ca2+) and operation parameters (permeate flux and filtration time) were comparatively evaluated for alumina and silicon carbide (SiC) deposited ceramic membranes, with different physicochemical surface properties. The original membranes were made of 100% alumina, while the same membranes were also deposited with a SiC layer to change the surface charge and hydrophilicity. The SiC-deposited membrane showed a lower reversible and irreversible fouling when permeate flux was below 110 L m-2 h-1. In addition, it exhibited a higher permeance recovery after physical and chemical cleaning, as compared to the alumina membranes. Increasing sodium dodecyl sulfate (SDS) concentration in the feed decreased the fouling of both membranes, but to a higher extent in the alumina membranes. The fouling of both membranes could be reduced with increasing the pH of the emulsion due to the enhanced electrostatic repulsion between oil droplets and membrane surface. Because of the screening of surface charge in a high salinity solution (100 mM NaCl), only a small difference in irreversible fouling was observed for alumina and SiC-deposited membranes under these conditions. The presence of Ca2+ in the emulsion led to high irreversible fouling of both membranes, because of the compression of diffusion double layer and the interactions between Ca2+ and SDS. The low fouling tendency and/or high cleaning efficiency of the SiC-deposited membranes indicated their potential for oily wastewater treatment.


Assuntos
Membranas Artificiais , Purificação da Água , Óxido de Alumínio , Compostos Inorgânicos de Carbono , Emulsões , Filtração , Óleos/química , Compostos de Silício , Água
7.
Environ Technol ; 43(27): 4306-4314, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34157955

RESUMO

Excessive F- in drinking water due to natural and anthropogenic activities is a serious health hazard affecting humans worldwide. In this study, a comparative assessment was made of eight mineral-based materials with advantageous structural properties for F- uptake: layered-double-hydroxides (LDHs), geopolymers, softening pellets and struvite. These materials are considered low-cost, for being either a waste or by-product, or can be locally-sourced. It can be concluded that Ca-based materials showed the strongest affinity for F- (Ca-Al-CO3 LDHs, slag-based geopolymer, softening pellets). The Langmuir adsorption capacity of Ca-Al-CO3 LDHs, slag-based geopolymer and softening pellets was observed to be 20.83, 5.23 and 1.20 mg/g, respectively. The main mechanism of F- uptake on Ca-Al-CO3 LDHs, Mg-Al-Cl LDHs, slag-based geopolymers and softening pellets was found to be sorption at low initial F- concentrations (<10 mg/L) whereas precipitation as CaF2 is proposed to play a major role at higher initial F- concentrations (>20 mg/L). Although the softening pellets had the highest Ca-content (96-97%; XRF), their dense structure and consequent low BET surface area (2-3 m2/g), resulted in poorer performance than the Ca-based LDHs and slag-based geopolymers. Nevertheless, geopolymers, as well as struvite, were not considered to be of interest for application in water treatment, as they would need modification due to their poor stability and/or F- leaching.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Fluoretos , Estruvita , Poluentes Químicos da Água/química , Hidróxidos/química , Purificação da Água/métodos , Adsorção
8.
Membranes (Basel) ; 11(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34832117

RESUMO

Membrane filtration is considered to be one of the most promising methods for oily wastewater treatment. Because of their hydrophilic surface, ceramic membranes show less fouling compared with their polymeric counterparts. Membrane fouling, however, is an inevitable phenomenon in the filtration process, leading to higher energy consumption and a shorter lifetime of the membrane. It is therefore important to improve the fouling resistance of the ceramic membranes in oily wastewater treatment. In this review, we first focus on the various methods used for ceramic membrane modification, aiming for application in oily wastewater. Then, the performance of the modified ceramic membranes is discussed and compared. We found that, besides the traditional sol-gel and dip-coating methods, atomic layer deposition is promising for ceramic membrane modification in terms of the control of layer thickness, and pore size tuning. Enhanced surface hydrophilicity and surface charge are two of the most used strategies to improve the performance of ceramic membranes for oily wastewater treatment. Nano-sized metal oxides such as TiO2, ZrO2 and Fe2O3 and graphene oxide are considered to be the potential candidates for ceramic membrane modification for flux enhancement and fouling alleviation. The passive antifouling ceramic membranes, e.g., photocatalytic and electrified ceramic membranes, have shown some potential in fouling control, oil rejection and flux enhancement, but have their limitations.

9.
BMC Public Health ; 21(1): 1723, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551739

RESUMO

BACKGROUND: There is increasing recognition of the complexity underlying WASH conditions in developing countries. This article explores the complexity by assessing the vulnerability of a specific area to poor WASH conditions using a qualitative approach. METHODS: We present our findings for the district of East Sumba in Indonesia. This area is known as one of the poorest regions in Indonesia with inadequate WASH services, indigenous belief that hinder the practice of WASH-related behaviours, and has a high rate of children malnutrition. All the factors that contribute to poor WASH conditions were discussed through the lens of the Financial, Institutional, Environmental, Technological, and Social (FIETS) framework. We then summarised the factors and visualized the "system" using a mind map which shows how factors are interconnected and helps to find the root causes of poor WASH conditions. RESULTS: There are three main challenges that inhibit the improvement of WASH conditions in this area: inadequate institutional capacity, water scarcity, and poor socio-economic conditions. We found that a village leader is the most important actor who influences the sustainability of WASH services in this area and healthcare workers are influential WASH promoters. This study also shows how culture shapes people's daily lives and institution performance, and influences the current WASH conditions in East Sumba. The mind map shows there is an overlap and interconnection between FIEST aspects and WASH conditions in the study area. CONCLUSION: WASH conditions are influenced by many factors and are often interconnected with each other. Understanding this complexity is necessary to improve WASH conditions and sustain adequate WASH services in developing countries. Finally, WASH interventions have to be considerate of the prevailing cultural practices and should involve multidisciplinary stakeholders.


Assuntos
Saneamento , Água , Criança , Humanos , Higiene , Indonésia/epidemiologia , Abastecimento de Água
10.
Water Res ; 202: 117443, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333298

RESUMO

Low molecular weight (LMW) dissolved organic matter (DOM) is the predominant competitor for adsorption sites against organic micropollutants (OMPs) in activated carbon adsorption. However, top-down approaches using highly complex mixtures of real water DOM do not allow to concisely examine the impacts of specific LMW DOM molecular properties on competitive adsorption. Therefore, we followed a bottom-up approach using fifteen model compounds (mDOM) to elucidate how important DOM characteristics, including hydrophobicity and unsaturated structures (ring, double/triple bond), impact competitiveness. Large concentration asymmetry (~500 µg DOC/µg OMP) made mDOM compounds, which were overall less preferentially adsorbed than OMPs, become competitive against OMPs and inhibit OMP adsorption kinetics by pre-occupation of adsorption sites. Our results revealed that both hydrophobicity interactions and π-interactions increased mDOM competitiveness, while π-interactions outweighed hydrophobic interactions. However, π-interactions could not be satisfactorily evaluated with a parameter such as specific ultraviolet absorbance (SUVA) due to interferences of carboxyl groups in aromatic mDOMs. Instead, mDOM adsorbability, described by mDOM adsorption capacity, proved to be a comprehensive indicator for mDOM competitiveness. To our knowledge, this is the first study that systematically clarifies the impacts of intricately interacting molecular properties on DOM adsorption and the related competition against OMP adsorption. DOM adsorbability may inspire a new fractionation, and assist the further isolation, identification and detailed characterization of LMW DOM competitors in real DOM-containing waters.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Cinética , Peso Molecular , Poluentes Químicos da Água/análise
11.
Water Res ; 202: 117404, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34271453

RESUMO

Storage containers are usually used to provide a constant water head in decentralized, community groundwater treatment systems for the removal of iron (Fe) and arsenic (As). However, the commonly practiced aeration prior to storage assists in rapid and complete Fe2+ oxidation, resulting in poor As removal, despite sufficient native-Fe2+ in the source water. In this study, it was found that application of anoxic storage enhanced As removal from groundwater, containing ≥300 µg/L of As(III) and 2.33 mg/L of Fe2+ in an As affected village of Rajshahi district in Bangladesh. Although the oxidation of Fe2+ and As(III) during oxic storage was considerably faster, the As/Fe removal ratio was higher during anoxic storage (61-80±5 µgAs/mgFe) compared to the oxic storage (45±5 µgAs/mgFe). This higher As removal efficacy in anoxic storage containers could not be attributed to the speciation of As, since As(V) concentrations were higher during oxic storage due to more favorable abiotic (As(III) oxidation by O2 and Fenton-like intermediates) and biotic (As(III) oxidizing bacteria, e.g., Sideroxydans, Gallionella, Hydrogenophaga) conditions. The continuous, in-situ hydrous ferric oxide floc formation during flow-through operation, and the favorable lower pH aiding higher sorption capacities for the gradually formed As(V) likely contributed to the improved performance in the anoxic storage containers.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Arsênio/análise , Bangladesh , Compostos Férricos , Ferro/análise , Oxirredução , Poluentes Químicos da Água/análise
12.
J Hazard Mater ; 411: 124823, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-33858074

RESUMO

Generally, abstracted groundwater is aerated, leading to iron (Fe2+) oxidation to Fe3+ and precipitation as Fe3+-(hydr)oxide (HFO) flocs. This practice of passive groundwater treatment, however, is not considered a barrier for arsenic (As), as removal efficiencies vary widely (15-95%), depending on Fe/As ratio. This study hypothesizes that full utilization of the adsorption capacity of groundwater native-Fe2+ based HFO flocs is hampered by rapid Fe2+ oxidation-precipitation during aeration before or after storage. Therefore, delaying Fe2+ oxidation by the introduction of an anoxic storage step before aeration-filtration was investigated for As(III) oxidation and removal in Rajshahi (Bangladesh) with natural groundwater containing 329(±0.05) µgAs/L. The results indicated that As(III) oxidation in the oxic storage was higher with complete and rapid Fe2+ oxidation (2±0.01 mg/L) than in the anoxic storage system, where Fe2+ oxidation was partial (1.03±0.32 mg/L), but the oxidized As(V)/Fe removal ratio was comparatively higher for the anoxic storage system. The low pH (6.9) and dissolved oxygen (DO) concentration (0.24 mg/L) in the anoxic storage limited the rapid oxidation of Fe2+ and facilitated more As(V) removal. The groundwater native-Fe2+ (2.33±0.03 mg/L) removed 61% of As in the oxic system (storage-aeration-filtration), whereas 92% As removal was achieved in the anoxic system.

13.
Water Res ; 188: 116472, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33027697

RESUMO

Continuous development of industry and civilization has led to changes in composition, texture and toxicity of waste water due to the wide range of pollutants being present. Considering that the conventional wastewater treatment methods are insufficient for removing micropollutants and nutrients to a high level, other, alternative, treatment methods should be used to polish wastewater treatment plant effluents. In this study we developed an alternative, polishing concept for removal of ammonium and micropollutants that could potentially be incorporated in existing wastewater treatment plants. We demonstrated a method to use high silica MOR zeolite granules as an adsorbent for simultaneous removal of the micropollutant sulfamethoxazole (SMX) and ammonium (NH4+) ions from aqueous solutions. At an initial NH4+ concentration of 10 mg/L the high silica zeolite mordenite (MOR) granules removed 0.42 mg/g of NH4+, similar to the removal obtained by commonly used natural zeolite Zeolita (0.44 mg/g). However, at higher NH4+ concentrations the Zeolita performed better. In addition, the Langmuir isotherm model showed a higher maximum adsorption capacity of Zeolita (qmax, 4.08 mg/g), which was about two times higher than that of MOR (2.11). The adsorption capacity of MOR towards SMX, at both low (2 µg/L) and high (50 mg/L) initial concentrations, was high and even increased in the presence of NH4+ ions. The used adsorbent could be regenerated with ozone and reused in consecutive adsorption-regeneration cycles with marginal decrease in the total adsorption capacity.


Assuntos
Compostos de Amônio , Ozônio , Poluentes Químicos da Água , Purificação da Água , Zeolitas , Adsorção , Dióxido de Silício , Sulfametoxazol
14.
Water Res ; 188: 116531, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33126004

RESUMO

Arsenic (As) is a toxic element present in many (ground)water sources in the world. Most conventional As removal techniques require pre-oxidation of the neutral arsenite (As(III)) species to the negatively charged arsenate (As(V)) oxyanion to optimize As removal and minimize chemical use. In this work, a novel, continuous-flow As removal system was developed that combines biological As(III) oxidation by bacteria with Fe electrocoagulation (EC), an Fe(0)-based electrochemical technology that generates reactive Fe(III) precipitates to bind As. The bio-integrated FeEC system (bio-FeEC) showed effective oxidation and removal of 150 µg/L As(III), without the need of chemicals. To remove As to below the WHO guideline of 10 µg/L, 10 times lower charge dosage was required for the bio-FeEC system compared to conventional FeEC. This lower Fe dosage requirement reduced sludge production and energy consumption. The As(III) oxidizing biomass was found to consist of bacteria belonging to Comamonadaceae, Rhodobacteraceae and Acidovorax, which are capable of oxidizing As(III) and are common in drinking water biofilms. Characterization of the As-laden Fe solids by X-ray absorption spectroscopy indicated that both bio-FeEC and conventional FeEC produced solids consistent with a mixture of lepidocrocite and 2-line ferrihydrite. Arsenic bound to the solids was dominantly As(V), but a slightly higher fraction of As(V) was detected in the bio-FeEC solids compared to the conventional FeEC.


Assuntos
Arsênio , Produtos Biológicos , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Eletrocoagulação , Compostos Férricos , Ferro , Oxirredução
15.
Sci Rep ; 10(1): 18867, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139766

RESUMO

Assessing water quality and identifying the potential source of contamination, by Sanitary inspections (SI), are essential to improve household drinking water quality. However, no study link the water quality at a point of use (POU), household level or point of collection (POC), and associated SI data in a medium resource setting using a Bayesian Belief Network (BBN) model. We collected water samples and applied an adapted SI at 328 POU and 265 related POC from a rural area in East Sumba, Indonesia. Fecal contamination was detected in 24.4 and 17.7% of 1 ml POC and POU samples, respectively. The BBN model showed that the effect of holistic-combined interventions to improve the water quality were larger compared to individual intervention. The water quality at the POU was strongly related to the water quality at the POC and the effect of household water treatment to improve the water quality was more prominent in the context of better sanitation and hygiene conditions. In addition, it was concluded that the inclusion of extra "external" variable (fullness level of water at storage), besides the standard SI variables, could improve the model's performance in predicting the water quality at POU. Finally, the BBN approach proved to be able to illustrate the interdependencies between variables and to simulate the effect of the individual and combination of variables on the water quality.

16.
Water Res ; 173: 115574, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32062223

RESUMO

Though the ozone-activated carbon process has been widely applied for drinking water purification, little is known about how ozone-modified natural organic matter (NOM) competes with micropollutants in activated carbon adsorption. In this study, three natural waters and one synthetic water (standard humics solution) with highly heterogeneous NOM compositions were employed to investigate the interference of ozonated NOM with the adsorption of 2-methylisoborneol (MIB). Analysis using liquid chromatography with online carbon and UV254 detection (LC-OCD-UVD) revealed that ozonation led to various disintegration patterns of macromolecules in NOM, and UV absorbance was reduced markedly for nearly all NOM fractions. Powdered activated carbon (PAC) adsorption experiments showed that increasing ozone consumption coincided with reducing NOM competition against MIB in the three natural waters, as expressed by the fitted initial concentrations of the equivalent background compound (c0,EBC). In the synthetic water, in contrast, competition increased under low/moderate specific ozone consumptions and then decreased with further elevation of ozone consumptions. Regarding the significance on affecting ozonated NOM interference, aromaticity reduction outweighed formation of low molecular weight (LMW) organics in most cases, enhancing MIB adsorption capacity. However, disintegration of the humics fraction with larger molecular weight (1,103 g/mol, as compared to 546-697 g/mol in three natural waters) into smaller, more competitive fractions caused the observed initial deteriorated MIB adsorption in synthetic water. A superior correlation between c0,EBC and the UV absorbance of LMW organics (R2 = 0.93) over concentrations of LMW organics underlined the importance of the aromatic properties in competitive adsorption projection for ozone pretreated natural waters. Furthermore, the change of relative concentration of UV absorbing compounds during ozonation could help estimate the decrease of c0,EBC, which could be a promising tool for waterworks to adjust PAC doses for MIB removal in ozonated waters.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Canfanos , Carvão Vegetal
17.
Chemosphere ; 243: 125307, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31733543

RESUMO

In this study, F- removal by Ca-Al-CO3 layered double hydroxides (LDHs) was investigated at environmentally-relevant concentration ranges (2-12 mg/L) to below the WHO guideline, with an emphasis on the effect of LDHs' modification, as well as the effects of initial F- concentration, adsorbent dose, pH, temperature and co-existing ions. Ca-Al-CO3 LDHs, either untreated, calcined or microwave treated, showed affinity for the removal of F- from synthetic groundwater with capacities of 6.7-8.4 mg F-/g LDHs at groundwater-relevant pH, with a higher F- removal capacity at lower pH (<8) and lower temperature (12 °C, as compared to 25 °C & 35 °C). Since calcination and microwave treatment resulted in only marginal defluorination improvements, using untreated LDHs appears the practically most feasible option. For the untreated LDHs, competition with Cl- and NO3- was not observed, whereas at higher HCO3- and SO42- concentrations (>250 mg/L) a slight reduction in F- removal was observed. This study indicates the potential of Ca-Al-CO3 LDHs as a cost-effective F- removal technology, particularly when locally sourced and in combination with low-cost pH correction.


Assuntos
Fluoretos/isolamento & purificação , Hidróxidos/química , Purificação da Água/métodos , Adsorção , Água Subterrânea/química , Cinética , Poluentes Químicos da Água/isolamento & purificação
18.
Int J Hyg Environ Health ; 222(5): 847-855, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31047815

RESUMO

About 20 Million (73%) people in Nepal still do not have access to safely managed drinking water service and 22 million (79%) do not treat their drinking water before consumption. Few studies have addressed the combination of socio-economic characteristics and psychosocial factors that explain such behaviour in a probabilistic manner. In this paper we present a novel approach to assess the usage of household water treatment (HWT), using data from 451 households in mid and far-western rural Nepal. We developed a Bayesian belief network model that integrates socio-economic characteristics and five psychosocial factors. The socio-economic characteristics of households included presence of young children, having been exposed to HWT promotion in the past, level of education, type of water source used, access to technology and wealth level. The five psychosocial factors capture households' perceptions of incidence and severity of water-borne infections, attitudes towards the impact of poor water quality on health, water treatment norms and the knowledge level for performing HWT. We found that the adoption of technology was influenced by the psychosocial factors norms, followed by the knowledge level for operating the technology. Education, wealth level, and being exposed to the promotion of HWT were the most influential socio-economic characteristics. Interestingly, households who were connected to a piped water scheme have a higher probability of HWT adoption compared to other types of water sources. The scenario analysis revealed that interventions that only target single socio-economic characteristics do not effectively boost the probability of HWT practice. However, interventions addressing several socio-economic characteristics increase the probability of HWT adoption among the target groups.


Assuntos
Purificação da Água/métodos , Teorema de Bayes , Comportamento , Estudos Transversais , Características da Família , Humanos , Nepal , Psicologia , Fatores Socioeconômicos , Microbiologia da Água , Abastecimento de Água
19.
Water Res ; 160: 130-147, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31136847

RESUMO

The quality and quantity of natural organic matter (NOM) has been observed to evolve which poses challenges to water treatment facilities. Even though NOM may not be toxic itself, its presence in water has aesthetic effects, enhances biological growth in distribution networks, binds with pollutants and controls the bioavailability of trace metals. Even though NOM has heterogeneous functional groups, the predominant ones are the carboxyl and the phenolic groups, which have high affinities for metals depending on the pH. The properties of both the NOM and the trace elements influence the binding kinetics and preferences. Ca2+ prefers to bind with the carboxylic groups especially at a low pH while Zn2+ prefers the amine groups though practically, most cations bind to several functions groups. The nature of the chemical environment (neighboring ligands) the ligand finds itself equally influences its preference for a cation. The presence of NOM, cations or a complex of NOM-cations may have significant impact on the efficiency of water processes such as coagulation, adsorption, ion exchange resin and membrane filtration. In coagulation, the complexation between the coagulant salts and NOM helps to remove NOM from solution. This positive influence can further be enhanced by the addition of Ca2+. A negative influence is however, observed in lime-softening method as NOM complexes with Ca2+. A negative influence is also seen in membrane filtration where divalent cations partially neutralize the carboxyl functional groups of NOM thereby reducing the repulsion effect on NOM and increasing membrane fouling. The formation of disinfection by-products could either be increased or reduced during chlorination, the speciation of products formed is modified with generally the enhancement of haloacetic acid formation observed in presence of metal cations. This current work, presents in details the interactions of cations and NOM in the environment, the preference of cations for each functional group and the possible competition between cations for binding sites, as well as the possible impacts of the presence of cations, NOM, or their complex on water treatment processes.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Metais , Água
20.
Water Res ; 147: 299-310, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30317039

RESUMO

As a consequence of the suspended sediments in river water, cake formation on the streambed and clogging of the aquifer may occur, leading to a decline in the production yield of riverbank filtration systems, particularly in highly turbid river waters. However, naturally occurring flow forces may induce sufficient scouring of the streambed, thereby self-regulating the thickness of the formed cake layer. This study assessed the recovery of the infiltration capacity in a simulated physically clogged riverbank filtration system, due to self-cleansing processes. A straight tilting flume, provided with an infiltration column at the bottom, was used for emulating clogging, infiltration and self-cleansing. Based on the presented research it may be concluded that the infiltration of a mixture of different sediments, as found in natural water bodies, can already be recovered at low shear stresses. Clay and silt behaved very differently, due to the difference in cohesiveness. Clay was found to produce a persistent sticky cake layer, whereas silt penetrated deeper into the bed, both resulting in an absence of infiltration velocity recovery. A cake layer of fine sand sediments was easiest to remove, resulting in dune formation on the streambed. However, due to deep bed clogging by fine sand particles in a coarser streambed, the infiltration velocity did not fully recover. The interaction between mixed suspended sediments (5% clay, 80% silt, and 15% fine sand) resulted in uneven erosion patterns during scouring of the streambed and recovery of the infiltration velocity is low. Altogether it may be concluded that natural recovery of infiltration capacity during river bank filtration of highly turbid waters is expected to occur, as long as the river carries a mixture of suspended sediments and the sand of the streambed is not too coarse.


Assuntos
Água Subterrânea , Rios , Filtração , Água Doce , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...