Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
PLoS Biol ; 22(6): e3002662, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38870210

RESUMO

The polygonal shape of cells in proliferating epithelia is a result of the tensile forces of the cytoskeletal cortex and packing geometry set by the cell cycle. In the larval Drosophila epidermis, two cell populations, histoblasts and larval epithelial cells, compete for space as they grow on a limited body surface. They do so in the absence of cell divisions. We report a striking morphological transition of histoblasts during larval development, where they change from a tensed network configuration with straight cell outlines at the level of adherens junctions to a highly folded morphology. The apical surface of histoblasts shrinks while their growing adherens junctions fold, forming deep lobules. Volume increase of growing histoblasts is accommodated basally, compensating for the shrinking apical area. The folded geometry of apical junctions resembles elastic buckling, and we show that the imbalance between the shrinkage of the apical domain of histoblasts and the continuous growth of junctions triggers buckling. Our model is supported by laser dissections and optical tweezer experiments together with computer simulations. Our analysis pinpoints the ability of histoblasts to store mechanical energy to a much greater extent than most other epithelial cell types investigated so far, while retaining the ability to dissipate stress on the hours time scale. Finally, we propose a possible mechanism for size regulation of histoblast apical size through the lateral pressure of the epidermis, driven by the growth of cells on a limited surface. Buckling effectively compacts histoblasts at their apical plane and may serve to avoid physical harm to these adult epidermis precursors during larval life. Our work indicates that in growing nondividing cells, compressive forces, instead of tension, may drive cell morphology.


Assuntos
Epiderme , Larva , Morfogênese , Animais , Epiderme/metabolismo , Larva/crescimento & desenvolvimento , Drosophila melanogaster/crescimento & desenvolvimento , Células Epidérmicas , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Células Epiteliais/metabolismo , Fenômenos Biomecânicos , Junções Aderentes/metabolismo , Forma Celular , Simulação por Computador , Drosophila/crescimento & desenvolvimento , Modelos Biológicos
2.
Nat Phys ; 13(8): 771-775, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28781604

RESUMO

Living cells are viscoelastic materials, with the elastic response dominating at long timescales (≳1 ms)1. At shorter timescales, the dynamics of individual cytoskeleton filaments are expected to emerge, but active microrheology measurements on cells accessing this regime are scarce2. Here, we develop high-frequency microrheology (HF-MR) to probe the viscoelastic response of living cells from 1Hz to 100 kHz. We report the viscoelasticity of different cell types and upon cytoskeletal drug treatments. At previously inaccessible short timescales, cells exhibit rich viscoelastic responses that depend on the state of the cytoskeleton. Benign and malignant cancer cells revealed remarkably different scaling laws at high frequency, providing a univocal mechanical fingerprint. Microrheology over a wide dynamic range up to the frequency of action of the molecular components provides a mechanistic understanding of cell mechanics.

3.
Sci Rep ; 7(1): 5117, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28698636

RESUMO

We present a procedure that allows a reliable determination of the elastic (Young's) modulus of soft samples, including living cells, by atomic force microscopy (AFM). The standardized nanomechanical AFM procedure (SNAP) ensures the precise adjustment of the AFM optical lever system, a prerequisite for all kinds of force spectroscopy methods, to obtain reliable values independent of the instrument, laboratory and operator. Measurements of soft hydrogel samples with a well-defined elastic modulus using different AFMs revealed that the uncertainties in the determination of the deflection sensitivity and subsequently cantilever's spring constant were the main sources of error. SNAP eliminates those errors by calculating the correct deflection sensitivity based on spring constants determined with a vibrometer. The procedure was validated within a large network of European laboratories by measuring the elastic properties of gels and living cells, showing that its application reduces the variability in elastic moduli of hydrogels down to 1%, and increased the consistency of living cells elasticity measurements by a factor of two. The high reproducibility of elasticity measurements provided by SNAP could improve significantly the applicability of cell mechanics as a quantitative marker to discriminate between cell types and conditions.


Assuntos
Hidrogéis/química , Microscopia de Força Atômica/métodos , Animais , Cães , Módulo de Elasticidade , Células Madin Darby de Rim Canino , Nanotecnologia , Reprodutibilidade dos Testes , Estresse Mecânico
4.
ACS Nano ; 9(6): 5846-56, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26013956

RESUMO

In multicellular organisms, cell shape and organization are dictated by cell-cell or cell-extracellular matrix adhesion interactions. Adhesion complexes crosstalk with the cytoskeleton enabling cells to sense their mechanical environment. Unfortunately, most of cell biology studies, and cell mechanics studies in particular, are conducted on cultured cells adhering to a hard, homogeneous, and unconstrained substrate with nonspecific adhesion sites, thus far from physiological and reproducible conditions. Here, we grew cells on three different fibronectin patterns with identical overall dimensions but different geometries (▽, T, and Y), and investigated their topography and mechanics by atomic force microscopy (AFM). The obtained mechanical maps were reproducible for cells grown on patterns of the same geometry, revealing pattern-specific subcellular differences. We found that local Young's moduli variations are related to the cell adhesion geometry. Additionally, we detected local changes of cell mechanical properties induced by cytoskeletal drugs. We thus provide a method to quantitatively and systematically investigate cell mechanics and their variations, and present further evidence for a tight relation between cell adhesion and mechanics.


Assuntos
Células/citologia , Microscopia de Força Atômica , Estresse Mecânico , Adesão Celular , Células Cultivadas , Humanos
5.
Biophys J ; 108(6): 1330-1340, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25809247

RESUMO

In eukaryotic cells, an actin-based cortex lines the inner leaflet of the plasma membrane, endowing the cells with crucial mechanical and functional properties. Unfortunately, it has not been possible to study the structural dynamics of the actin cortex at high lateral resolution in living cells. Here, we performed atomic force microscopy time-lapse imaging and mechanical mapping of actin in the cortex of living cells at high lateral and temporal resolution. Cortical actin filaments adopted discernible arrangements, ranging from large parallel bundles with low connectivity to a tight meshwork of short filaments. Mixing of these architectures resulted in attuned cortex networks with specific connectivity, mechanical responses, and marked differences in their dynamic behavior.


Assuntos
Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Animais , Módulo de Elasticidade , Fibroblastos/metabolismo , Camundongos , Microscopia de Força Atômica , Células NIH 3T3 , Imagem com Lapso de Tempo
6.
PLoS One ; 9(11): e111836, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25369125

RESUMO

Human Galectin-3 is found in the nucleus, the cytoplasm and at the cell surface. This lectin is constituted of two domains: an unfolded N-terminal domain and a C-terminal Carbohydrate Recognition Domain (CRD). There are still uncertainties about the relationship between the quaternary structure of Galectin-3 and its carbohydrate binding properties. Two types of self-association have been described for this lectin: a C-type self-association and a N-type self-association. Herein, we have analyzed Galectin-3 oligomerization by Dynamic Light Scattering using both the recombinant CRD and the full length lectin. Our results proved that LNnT induces N-type self-association of full length Galectin-3. Moreover, from Nuclear Magnetic Resonance (NMR) and Surface Plasmon Resonance experiments, we observed no significant specificity or affinity variations for carbohydrates related to the presence of the N-terminal domain of Galectin-3. NMR mapping clearly established that the N-terminal domain interacts with the CRD. We propose that LNnT induces a release of the N-terminal domain resulting in the glycan-dependent self-association of Galectin-3 through N-terminal domain interactions.


Assuntos
Galectina 3/química , Proteínas Sanguíneas , Galectinas , Glicosilação , Humanos , Lactose/química , Modelos Moleculares , Oligossacarídeos/química , Ligação Proteica , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Estrutura Quaternária de Proteína
7.
Mol Cell ; 49(3): 547-57, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23260658

RESUMO

In all organisms, replication impairment is a recognized source of genomic instability, raising an increasing interest in the fate of inactivated replication forks. We used Escherichia coli strains with a temperature-inactivated replicative helicase (DnaB) and in vivo single-molecule microscopy to quantify the detailed molecular processing of stalled replication forks. After helicase inactivation, RecA binds to blocked replication forks and is essential for the rapid release of hPol III. The entire holoenzyme is disrupted little by little, with some components lost in few minutes, while others are stable in 70% of cells for at least 1 hr. Although replisome dissociation is delayed in a recA mutant, it is not affected by RecF or RecO inactivation. RecFOR are required for full RecA filaments formation, and we propose that polymerase clearance can be catalyzed by short, RecFOR-independent RecA filaments. Our results identify a function for the universally conserved, central recombination protein RecA.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , DnaB Helicases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citologia , Escherichia coli/enzimologia , Complexos Multienzimáticos/metabolismo , Recombinases Rec A/metabolismo , DNA Polimerase III/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Fluorescência , Holoenzimas/metabolismo , Proteínas Luminescentes/metabolismo , Ligação Proteica , Temperatura
8.
J Nanobiotechnology ; 11 Suppl 1: S3, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24565326

RESUMO

The capacity of proteins to function relies on a balance between molecular stability to maintain their folded state and structural flexibility allowing conformational changes related to biological function. Among many others, four different examples can be chosen. The giant protein titin is stretched and can unfold during muscle contraction providing passive elasticity to muscle tissue; myoglobin adsorbs and releases oxygen molecules thank to conformational changes in its structure; the outer membrane protein G (OmpG) is a bacterial porin with a long and flexible loop that modulates gating; and the proton pump bacteriorhodopsin adapts its cytosolic half to allow proton pumping. All these conformational changes triggered either by chemical or by physical cues, require mechanical flexibility or elasticity of certain protein domains. While the methods to determine protein structure, X-ray crystallography above all, have been dramatically improved over the last decades, the number of tools that directly measure the mechanical flexibility of proteins and protein domains is still limited. In this tutorial, after a brief introduction to protein structure, we present some of the available techniques to estimate protein flexibility, then focusing on atomic force microscopy (AFM). We describe the principles of the technique and its various imaging and force spectroscopy modes of operation that allow probing the elasticity of proteins, protein domains and their surrounding environment.


Assuntos
Microscopia de Força Atômica/métodos , Dobramento de Proteína , Proteínas/química , Proteínas/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Maleabilidade , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...