Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299166

RESUMO

Catharanthus roseus L. (G.) Don is the most widely studied plant because of its high pharmacological value. In vitro culture uses various plant parts such as leaves, nodes, internodes and roots for inducing callus and subsequent plant regeneration in C. roseus. However, till now, little work has been conducted on anther tissue using plant tissue culture techniques. Therefore, the aim of this work is to establish a protocol for in vitro induction of callus by utilizing anthers as explants in MS (Murashige and Skoog) medium fortified with different concentrations and combinations of PGRs. The best callusing medium contains high α-naphthalene acetic acid (NAA) and low kinetin (Kn) concentrations showing a callusing frequency of 86.6%. SEM-EDX analysis was carried out to compare the elemental distribution on the surfaces of anther and anther-derived calli, and the two were noted to be nearly identical in their elemental composition. Gas chromatography-mass spectrometry (GC-MS) analysis of methanol extracts of anther and anther-derived calli was conducted, which revealed the presence of a wide range of phytocompounds. Some of them are ajmalicine, vindolinine, coronaridine, squalene, pleiocarpamine, stigmasterol, etc. More importantly, about 17 compounds are exclusively present in anther-derived callus (not in anther) of Catharanthus. The ploidy status of anther-derived callus was examined via flow cytometry (FCM), and it was estimated to be 0.76 pg, showing the haploid nature of callus. The present work therefore represents an efficient way to produce high-value medicinal compounds from anther callus in a lesser period of time on a larger scale.

2.
Animals (Basel) ; 13(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37106899

RESUMO

In order to manage important transformations affecting a steppe area, it is necessary to analyze the existing pastoral system by evaluating the sustainability of its subsystems of production. For this reason, in this study, a tool for the evaluation of the sustainability of livestock production in the steppe area was used in order to identify the most sustainable systems. The study was conducted using a survey of 87 livestock farmers (production units) in the region ranked first in terms of sheep production. Principal component analysis (PCA) enabled us to identify two production systems: (i) the pastoral production system, characterized by the mobility of livestock and its high dependence on concentrated feed; (ii) the agropastoral system, combining fodder and livestock production, which is sedentary and semi-extensive. Using a grid for evaluating the sustainability of livestock systems in steppe regions, the impact of each system on the environment (environmental, economic, and social) was examined, and the results showed that the feed system was unbalanced, with high pressure on steppe rangelands. Nevertheless, multiple ways of improving these systems emerged from the analysis, such as encouraging the production of fodder and its association with livestock, on new spatial, temporal, regional, and national levels.

3.
Plants (Basel) ; 12(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37111925

RESUMO

The demand for medicinal plants is on a rise due to their affordability, accessibility and relatively non-toxic nature. Combretum molle (Combretaceae) is used in African traditional medicine to treat a number of diseases. This study aimed to screen the phytochemical composition of the hexane, chloroform and methanol extracts of C. molle leaves and stems using qualitative phytochemical screening. Additionally, the study aimed to identify the functional phytochemical groups, determine the elemental composition and provide a fluorescence characterization of the powdered leaves and stems by performing Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray (EDX) microanalyses and fluorescence microscopy. Phytochemical screening revealed the presence of alkaloids, flavonoids, phenolic compounds, polyphenols, terpenoids, tannins, coumarins, saponins, phytosterols, gums, mucilage, carbohydrates, amino acids and proteins within all leaf and stem extracts. Lipids and fixed oils were additionally present within the methanol extracts. FTIR demonstrated significant peaks in absorption frequency in the leaf at wavelengths of 3283.18, 2917.81, 1617.72, 1318.83, 1233.97, 1032.32 and 521.38 cm-1, and in the stem at 3318.91, 1619.25, 1317.13, 1032.68, 780.86 and 516.39 cm-1. These corresponded to the functional groups of chemical compounds including alcohols, phenols, primary amines, alkyl halides, alkanes and alkyl aryl ethers, corroborating the presence of the detected phytochemicals within the plant. EDX microanalyses showed the elemental composition of the powdered leaves (68.44% C, 26.72% O, 1.87% Ca, 0.96% Cl, 0.93% Mg, 0.71% K, 0.13% Na, 0.12 % Mn and 0.10% Rb) and stems (54.92% C, 42.86% O, 1.7% Ca, 0.43% Mg and 0.09% Mn). Fluorescence microscopy provided a characteristic evaluation of the plant in its powdered form and revealed distinct colour changes in the material when treated with various reagents and viewed under ultraviolet light. In conclusion, the phytochemical constituents of the leaves and stems of C. molle confirm the suitability of this species for use in traditional medicine. The findings from this study suggest the need to validate the use of C. molle in the development of modern medicines.

4.
Plants (Basel) ; 12(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36771547

RESUMO

Controlled Environment Agriculture (CEA) is a method of increasing crop productivity per unit area of cultivated land by extending crop production into the vertical dimension and enabling year-round production. Light emitting diodes (LED) are frequently used as the source of light energy in CEA systems and light is commonly the limiting factor for production under CEA conditions. In the current study, the impact of different spectra was compared with the use of white LED light. The various spectra were white; white supplemented with ultraviolet b for a week before harvest; three combinations of red/blue lights (red 660 nm with blue 450 nm at 1:1 ratio; red 660 nm with blue 435 nm 1:1 ratio; red 660 nm with blue at mix of 450 nm and 435 nm 1:1 ratio); and red/blue supplemented with green and far red (B/R/G/FR, ratio: 1:1:0.07:0.64). The growth, yield, physiological and chemical profiles of two varieties of lettuce, Carmoli (red) and Locarno (green), responded differently to the various light treatments. However, white (control) appeared to perform the best overall. The B/R/G/FR promoted the growth and yield parameters in both varieties of lettuce but also increased the level of stem elongation (bolting), which impacted the quality of grown plants. There was no clear relationship between the various physiological parameters measured and final marketable yield in either variety. Various chemical traits, including vitamin C content, total phenol content, soluble sugar and total soluble solid contents responded differently to the light treatments, where each targeted chemical was promoted by a specific light spectrum. This highlights the importance of designing the light spectra in accordance with the intended outcomes. The current study has value in the field of commercial vertical farming of lettuce under CEA conditions.

5.
Plants (Basel) ; 11(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36235364

RESUMO

Diospyros villosa is a perennial species prominently acknowledged for its local medicinal applications. The native utilisation of this species in traditional medicine may be ascribed to the presence of secretory structures and their exudate (comprised of phytochemicals). However, the morphological nature and optical features of the secretory structures in D. villosa remain largely unclear. This study was directed to ascertain the occurrence and adaptive features of structures found within the leaves and stem bark of D. villosa using light and electron microscopy techniques. The current study notes the existence of trichomes, and other secretory structures were noted. SEM indicated the presence of non-glandular hirsute trichomes with bulky stalk on both leaves and stem surfaces. Transverse stem sections revealed the existence of crystal idioblasts. Moreover, the presence of the main phytochemical groups and their localisation within the foliage and stem bark was elucidated through various histochemical tests. The trichomal length and density were also assessed in leaves at different stages of development. The results indicated that the trichomal density at different stages of development of the D. villosa leaves and stem bark was not significantly different from one another, F(3,39) = 1.183, p = 0.3297. The average length of the non-glandular trichomes in the emergent, young and mature leaves, as well as in the stem, was recorded to be 230 ± 30.6 µm, 246 ± 40.32 µm, 193 ± 27.55 µm and 164 ± 18.62 µm, respectively. The perimeter and circumference of the observed trichomes in the developmental stages of D. villosa leaf and the stem bark were not statistically different, F(3,39) = 1.092, p = 0.3615. The results of histochemical tests showed the existence of phenols alkaloids, which are medicinally important and beneficial for treatment of diseases. The findings of this study, being reported for the first time may be considered in establishing microscopic and pharmacognostic measure for future identification and verification of natural herbal plant. Trichomal micromorphology and histological evaluations could be utilised as a tool for appropriate description for the assessment of this species.

6.
Plants (Basel) ; 11(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36235380

RESUMO

The biosynthesis of silver nanoparticles (AgNPs) from Diospyros villosa leaves and stem bark extracts is described. The stem bark AgNPs of D. villosa synthesized at 80 °C (S80) showed good scavenging activity with a lower IC50 value of 8.75 µg·mL-1 compared to ascorbic acid (9.58 µg·mL-1). The total phenol content of the S80 AgNPs was measured and found to be 10.22 ± 0.14 mg.g-1 gallic acid equivalence (GAE). Bacterial growth inhibition (% GI) and violacein inhibition (% VI) of 10.08% and 58.83%, respectively, was observed against C.subtsugae CV017 with leaf AgNPs synthesized at 80 °C (L80) at 80 µg·mL-1. Stem bark AgNPs synthesized at room temperature (SRT) also indicated % GI of 13.83% and % VI of 65.97% against C. subtsugae CV017 at 160 µg·mL-1. Leaf AgNPs of D. villosa synthesized at room temperature (LRT), showed % GI of 29.07% and % VI of 56.53%, respectively, against C. violaceum ATCC 12472 at 320 µg·mL-1. The L80 and SRT at 160 µg·mL-1 and LRT at 320 µg·mL-1 may be considered as potential QS inhibitors following their activity against C. subtsugae CV017 and C. violaceum ATCC 12472, respectively. Therefore, D. villosa represents a potential source of antioxidants as well as an anti-quorum sensing therapeutic candidate for the control of Gram-negative bacterial infections.

7.
Plants (Basel) ; 11(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35161322

RESUMO

With the recent development of LED lighting systems for plant cultivation, the use of vertical farming under controlled conditions is attracting increased attention. This study investigated the impact of a number of LED light spectra (red, blue, green and white) on the growth, development and essential oil content of lemon balm (Melissa officinalis), a herb and pharmaceutical plant species used across the world. White light and red-rich light spectra gave the best outputs in terms of impact on the growth and yield. For blue-rich spectra, the development and yield was lower despite having a significant impact on the photosynthesis activity, including Fv/Fm and NDVI values. For the blue-rich spectra, a peak wavelength of 450 mn was better than that of 435 nm. The results have practical value in terms of increased yield and the reduction of electricity consumption under controlled environmental conditions for the commercial production of lemon balm.

8.
Plants (Basel) ; 10(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34685971

RESUMO

This study focused on the physiology, growth and antioxidant activity response of hydroponically grown lettuce (Lactuca sativa L.) under sole-source LED lighting of differing spectra. Lighting spectra were provided by differing combinations of LEDs of three different peak wavelengths, (Blue 435, Blue 450, and Red 663 nm) with ratios of B450/R663: 1.25 ± 0.1, B450/R663: 1.25 ± 0.1, and B450/R663 1:1 at two light intensities of photosynthetically active radiation (PAR) (270 µmol m-2 s-1 and 60 µmol m-2 s-1). A further experiment was conducted, in which Blue and Red LEDs were supplemented with Green (Blue 450, Red 663, and Green 520 nm) with ratios of B435/R663: 1.25 ± 0.1, B450/R663/G520: 1/0.73/0.26, and B450/R663: 1.25 ± 0.1. LED light intensities under the different spectra were adjusted to deliver the same level of PAR (270 ± 20 µmol m-2 s-1). Results from the first experiment showed that increased fraction of blue 435 nm in combination with red light at 663 nm at high irradiance enhanced the physiology of lettuce (i.e., significantly increased assimilation rate, stomatal conductance and transpiration rate) and increased the yield while having no significant effect on antioxidant activity. At the lower irradiance, the B435/R663 significantly increased antioxidant activity compared to other spectra. Results from the second experiment showed no significant effect of the spectra of LEDs on the physiology and yield of lettuce, but antioxidant activity was very significantly induced by B450/R663 at the ratio of 1.25 ± 0.1. However, the amount was still less than that obtained by B435/R663 1.25 ± 0.1 from the first experiment. This study indicates that LED light with a spectrum of B435/R663 at a ratio of 1.25 ± 0.1 significantly improves lettuce yield and antioxidant activity.

9.
Plants (Basel) ; 10(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34579300

RESUMO

Leucas lavandulaefolia Sm. (Lamiaceae) is an important medicinal plant with a broad spectrum of pharmacological activities. This study aimed at characterizing the morphology, distribution, and chemical composition of the secretions of trichomes at different developmental stages on the leaves of L. lavandulaefolia, using light and electron microscopy. Morphological observations revealed the presence of bicellular non-glandular, glandular peltate, and capitate trichomes on both adaxial and abaxial leaf surfaces. The density of both non-glandular and glandular trichomes decreased with the progression of leaf development. Heads of peltate and short-stalked capitate trichomes were between 20.78-42.80 µm and 14.98-18.93 µm at different developmental stages. Furthermore, long-stalked capitate trichomes were rare and infrequent. Leaf sections revealed the presence of important secondary metabolites in glandular trichomes, i.e., terpenoids. This study represents the first report on the morphology and histochemistry of trichomes of L. lavandulaefolia; therefore, there is a great scope for further research in this field.

10.
Plant Physiol Biochem ; 116: 91-105, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28551420

RESUMO

The development stages of conventional cauliflower seeds were studied and the accumulation of dehydrin proteins through the maturation stages was investigated with the aim of identifying methods to improve the viability of artificial seeds of cauliflower. While carbohydrate, ash and lipids increased throughout the development of cauliflower traditional seeds, proteins increased with the development of seed and reached the maximum level after 75 days of pollination, however, the level of protein started to decrease after that. A significant increase in the accumulation of small size dehydrin proteins (12, 17, 26 KDa) was observed during the development of cauliflower seeds. Several experiments were conducted in order to increase the accumulation of important dehydrin proteins in cauliflower microshoots (artificial seeds). Mannitol and ABA (Absisic acid) increased the accumulation of dehydrins in cauliflower microshoots while cold acclimation did not have a significant impact on the accumulation of these proteins. Molybdenum treatments had a negative impact on dehydrin accumulation. Dehydrins have an important role in the drought tolerance of seeds and, therefore, the current research helps to improve the accumulation of these proteins in cauliflower artificial seeds. This in turns improves the quality of these artificial seeds. The current results suggest that dehydrins do not play an important role in cold tolerance of cauliflower artificial seeds. This study could have an important role in improving the understanding of the molecular mechanism of abiotic stress tolerance in plants.


Assuntos
Brassica/metabolismo , Sementes/metabolismo , Brassica/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética
11.
Plant Physiol Biochem ; 63: 77-81, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23246916

RESUMO

Wheat is able to cold acclimate in response to low temperatures and thereby increase its frost tolerance and the extent of this acclimation is greater in winter genotypes compared to spring genotypes. Such up-regulation of frost tolerance is controlled by Cbf transcription factors. Molybdenum (Mo) application has been shown to enhance frost tolerance of wheat and this study aimed to investigate the effect of Mo on the development of frost tolerance in winter and spring wheat. Results showed that Mo treatment increased the expression of Cbf14 in wheat under non-acclimating condition but did not alter frost tolerance. However, when Mo was applied in conjunction with exposure of plants to low temperature, Mo increased the expression of Cbf14 and enhanced frost tolerance in both spring and winter genotypes but the effect was more pronounced in the winter genotype. It was concluded that the application of Mo could be useful in situations where enhanced frost resistance is required. Further studies are proposed to elucidate the effect of exogenous of applications of Mo on frost resistance in spring and winter wheat at different growth stages.


Assuntos
Molibdênio/farmacologia , Proteínas de Plantas/metabolismo , Triticum/efeitos dos fármacos , Triticum/metabolismo , Temperatura Baixa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...