Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 6107, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671016

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) play an important role in interstellar chemistry and are subject to high energy photons that can induce excitation, ionization, and fragmentation. Previous studies have demonstrated electronic relaxation of parent PAH monocations over 10-100 femtoseconds as a result of beyond-Born-Oppenheimer coupling between the electronic and nuclear dynamics. Here, we investigate three PAH molecules: fluorene, phenanthrene, and pyrene, using ultrafast XUV and IR laser pulses. Simultaneous measurements of the ion yields, ion momenta, and electron momenta as a function of laser pulse delay allow a detailed insight into the various molecular processes. We report relaxation times for the electronically excited PAH*, PAH+* and PAH2+* states, and show the time-dependent conversion between fragmentation pathways. Additionally, using recoil-frame covariance analysis between ion images, we demonstrate that the dissociation of the PAH2+ ions favors reaction pathways involving two-body breakup and/or loss of neutral fragments totaling an even number of carbon atoms.

2.
J Phys Chem A ; 121(1): 181-191, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-27997191

RESUMO

The propargyl radical is considered to be of key importance in the formation of the first aromatic ring in combustion processes. Here we study the bimolecular (self-) reactions of propargyl in a high-temperature pyrolysis flow reactor. The aromatic reaction products are identified by IR/UV ion dip spectroscopy, using the free electron laser FELIX as mid-infrared source. This technique combines mass selectivity with structural sensitivity. We identified several aromatic reaction products based on their infrared spectra, among them benzene, naphthalene, phenanthrene, indene, biphenyl, and surprisingly a number of aromatic compounds with acetylenic (ethynyl) side chains. The observation of benzene confirms that propargyl is involved in the formation of the first aromatic ring. The observation of compounds with acetylenic side chains shows that, in addition to a propargyl- and phenyl-based mechanism, the HACA (hydrogen abstraction C2H2 addition) mechanism of polycyclic aromatic hydrocarbons formation is present, although no acetylene was used as a reactant. On the basis of the experimental results we suggest a mechanism that connects the two pathways.

3.
Phys Chem Chem Phys ; 17(43): 29064-71, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26457393

RESUMO

The self-reaction of the phenyl radical is one of the key reactions in combustion chemistry. Here we study this reaction in a high-temperature flow reactor by IR/UV ion dip spectroscopy, using free electron laser radiation as mid-infrared source. We identified several major reaction products based on their infrared spectra, among them indene, 1,2-dihydronaphthalene, naphthalene, biphenyl and para-terphenyl. Due to the structural sensitivity of the method, the reaction products were identified isomer-selectively. The work shows that the formation of indene and naphthalene, which was previously considered to be evidence for the HACA (hydrogen abstraction C2H2 addition) mechanism in the formation of polycyclic aromatic hydrocarbons and soot can also be understood in a phenyl addition model.


Assuntos
Radicais Livres/química , Hidrocarbonetos Policíclicos Aromáticos/química , Compostos de Bifenilo/química , Temperatura Alta , Indenos/química , Espectrometria de Massas , Naftalenos/química , Espectrofotometria Infravermelho , Compostos de Terfenil/química
4.
Phys Chem Chem Phys ; 16(18): 8332-8, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24658321

RESUMO

A detailed theoretical and spectroscopic study on the electronically excited states of a trinuclear palladium complex is presented both in the gas phase and solution. The application of DFT and TDDFT methods as well as a variety of spectroscopic methods to the chosen complex [Pd3{Si(mt(Me))3}2] (1, mt(Me) = methimazole) leads to the first detailed analysis of the photophysics of a symmetric trinuclear complex. In combination with the calculations, energies, structures and lifetimes of the excited electronic states (with an (3)A1 state as the lowest one) are characterized by applying the resonant-2-photon-ionization method in a molecular beam experiment as well as luminescence, time-correlated single photon counting and excited state femtosecond absorption spectroscopy in solution. These investigations are of fundamental interest to analyze photophysical properties of metal containing complexes on a molecular level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...