Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 26(7): 8028-8039, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29715776

RESUMO

We present results of the timing performance studies of the optical part and front-end electronics of the time-of-flight subdetector prototype for the ATLAS Forward Proton (AFP) detector obtained during the test campaigns at the CERN-SPS test-beam facility (120 GeV π+ particles) in July 2016 and October 2016. The time-of-flight (ToF) detector in conjunction with a 3D silicon pixel tracker will tag and measure protons originating in central exclusive interactions p + p → p + X + p, where the two outgoing protons are scattered in the very forward directions. The ToF is required to reduce so-called pileup backgrounds that arise from multiple proton interactions in the same bunch crossing at high luminosity. The background can fake the signal of interest, and the extra rejection from the ToF allows the proton tagger to operate at the high luminosity required for the measurement of the processes. The prototype detector uses fused silica bars emitting Cherenkov radiation as a relativistic particle passes through them. The emitted Cherenkov photons are detected by a multi-anode micro-channel plate photomultiplier tube (MCP-PMT) and processed by fast electronics.

2.
Opt Express ; 24(24): 27951-27960, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27906363

RESUMO

We present the construction of the optical part of the ToF (time-of-flight) subdetector prototype for the AFP (ATLAS Forward Proton) detector. The ToF detector in conjunction with a 3D silicon pixel tracker will tag and measure protons originating in central exclusive interactions p + p → p + X + p, where the two outgoing protons are scattered in the very forward directions. The ToF is required to reduce so-called pileup backgrounds that arise from multiple proton interactions in the same bunch crossing at high luminosity. The background can fake the signal of interest, and the extra rejection from the ToF allows the proton tagger to operate at the high luminosity required for measurement of the processes. The prototype detector uses fused silica bars emitting Cherenkov radiation as a relativistic particle passes through it. The emitted Cherenkov photons are detected by a micro-channel plate multi-anode Photomultiplier Tube (MCP-PMT) and processed by fast electronics.

3.
Opt Express ; 22(23): 28984-96, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25402137

RESUMO

We present the results of studies devoted to the development and optimization of the optical part of a high precision time-of-flight (TOF) detector for the Large Hadron Collider (LHC). This work was motivated by a proposal to use such a detector in conjunction with a silicon detector to tag and measure protons from interactions of the type p + p → p + X + p, where the two outgoing protons are scattered in the very forward directions. The fast timing detector uses fused silica (quartz) bars that emit Cherenkov radiation as a relativistic particle passes through and the emitted Cherenkov photons are detected by, for instance, a micro-channel plate multi-anode Photomultiplier Tube (MCP-PMT). Several possible designs are implemented in Geant4 and studied for timing optimization as a function of the arrival time, and the number of Cherenkov photons reaching the photo-sensor.


Assuntos
Dispositivos Ópticos , Radiação , Simulação por Computador , Elétrons , Desenho de Equipamento , Fótons , Teoria Quântica , Dióxido de Silício/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...