Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2598: 21-27, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36355282

RESUMO

In native healthy hyaline cartilage, the chondrocytes are surrounded by a pericellular matrix that has a distinct composition and function compared to the hyaline cartilage extracellular matrix. The chondrocyte together with its pericellular matrix is called a chondron. The type VI collagen, which is the main component of the pericellular matrix, is resistant to enzymatic digestion by pure collagenase and dispase that do digest the extracellular matrix. Therefore, this combination of enzymes can be used to enzymatically isolate chondrons from hyaline cartilage. Chondrons have a high potential for cartilage tissue engineering. This chapter describes in detail how chondrons can be isolated from hyaline cartilage for further use.


Assuntos
Cartilagem Articular , Cartilagem Hialina , Condrócitos , Matriz Extracelular , Engenharia Tecidual , Colágeno Tipo VI
2.
Cartilage ; 13(4): 133-147, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36262105

RESUMO

OBJECTIVE: Allogeneic mesenchymal stromal cells (MSCs) are used in the 1-stage treatment of articular cartilage defects. The aim of this study is to investigate whether transport of mitochondria exists between chondrocytes and MSCs and to investigate whether the transfer of mitochondria to chondrocytes contributes to the mechanism of action of MSCs. DESIGN: Chondrocytes and MSCs were stained with MitoTracker, and CellTrace was used to distinguish between cell types. The uptake of fluorescent mitochondria was measured in cocultures using flow cytometry. Transport was visualized using fluorescence microscopy. Microvesicles were isolated and the presence of mitochondria was assessed. Mitochondria were isolated from MSCs and transferred to chondrocytes using MitoCeption. Pellets of chondrocytes, chondrocytes with transferred MSC mitochondria, and cocultures were cultured for 28 days. DNA content and proteoglycan content were measured. Mitochondrial DNA of cultured pellets and of repair cartilage tissue was quantified. RESULTS: Mitochondrial transfer occurred bidirectionally within the first 4 hours until 16 hours of coculture. Transport took place via tunneling nanotubes, direct cell-cell contact, and extracellular vesicles. After 28 days of pellet culture, DNA content and proteoglycan deposition were higher in chondrocyte pellets to which MSC mitochondria were transferred than the control groups. No donor mitochondrial DNA was traceable in the biopsies, whereas an increase in MSC mitochondrial DNA was seen in the pellets. CONCLUSIONS: These results suggest that mitochondrial transport plays a role in the chondroinductive effect of MSCs on chondrocytes in vitro. However, in vivo no transferred mitochondria could be traced back after 1 year.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Proteoglicanas/metabolismo , Diferenciação Celular , DNA Mitocondrial/metabolismo
3.
iScience ; 25(9): 104979, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36105583

RESUMO

Remaining challenges in auricular cartilage tissue engineering include acquiring sufficient amounts of regeneration-competent cells and subsequent production of high-quality neocartilage. Progenitor cells are a resident subpopulation of native cartilage, displaying a high proliferative and cartilage-forming capacity, yet their potential for regenerative medicine is vastly understudied. In this study, human auricular cartilage progenitor cells were newly identified in healthy cartilage and, importantly, in microtia-impaired chondral remnants. Their cartilage repair potential was assessed via in vitro 3D culture upon encapsulation in a gelatin-based hydrogel, and subsequent biochemical, mechanical, and histological analyses. Auricular cartilage progenitor cells demonstrate a potent ability to proliferate without losing their multipotent differentiation ability and to produce cartilage-like matrix in 3D culture. As these cells can be easily obtained through a non-deforming biopsy of the healthy ear or from the otherwise redundant microtia remnant, they can provide an important solution for long-existing challenges in auricular cartilage tissue engineering.

4.
Biomacromolecules ; 23(3): 1350-1365, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35195399

RESUMO

Viscoelastic hydrogels are gaining interest as they possess necessary requirements for bioprinting and injectability. By means of reversible, dynamic covalent bonds, it is possible to achieve features that recapitulate the dynamic character of the extracellular matrix. Dually cross-linked and double-network (DN) hydrogels seem to be ideal for the design of novel biomaterials and bioinks, as a wide range of properties required for mimicking advanced and complex tissues can be achieved. In this study, we investigated the fabrication of chondroitin sulfate/hyaluronic acid (CS/HA)-based DN hydrogels, in which two networks are interpenetrated and cross-linked with the dynamic covalent bonds of very different lifetimes. Namely, Diels-Alder adducts (between methylfuran and maleimide) and hydrazone bonds (between aldehyde and hydrazide) were chosen as cross-links, leading to viscoelastic hydrogels. Furthermore, we show that viscoelasticity and the dynamic character of the resulting hydrogels could be tuned by changing the composition, that is, the ratio between the two types of cross-links. Also, due to a very dynamic nature and short lifetime of hydrazone cross-links (∼800 s), the DN hydrogel is easily processable (e.g., injectable) in the first stages of gelation, allowing the material to be used in extrusion-based 3D printing. The more long-lasting and robust Diels-Alder cross-links are responsible for giving the network enhanced mechanical strength and structural stability. Being highly charged and hydrophilic, the cross-linked CS and HA enable a high swelling capacity (maximum swelling ratio ranging from 6 to 12), which upon confinement results in osmotically stiffened constructs, able to mimic the mechanical properties of cartilage tissue, with the equilibrium moduli ranging from 0.3 to 0.5 MPa. Moreover, the mesenchymal stromal cells were viable in the presence of the hydrogels, and the effect of the degradation products on the macrophages suggests their safe use for further translational applications. The DN hydrogels with dynamic covalent cross-links hold great potential for the development of novel smart and tunable viscoelastic materials to be used as biomaterial inks or bioinks in bioprinting and regenerative medicine.


Assuntos
Bioimpressão , Hidrogéis , Materiais Biocompatíveis , Sulfatos de Condroitina/química , Ácido Hialurônico/química , Hidrazonas , Hidrogéis/química , Engenharia Tecidual
5.
NPJ Regen Med ; 7(1): 2, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013329

RESUMO

Over the past two decades, evidence has emerged for the existence of a distinct population of endogenous progenitor cells in adult articular cartilage, predominantly referred to as articular cartilage-derived progenitor cells (ACPCs). This progenitor population can be isolated from articular cartilage of a broad range of species, including human, equine, and bovine cartilage. In vitro, ACPCs possess mesenchymal stromal cell (MSC)-like characteristics, such as colony forming potential, extensive proliferation, and multilineage potential. Contrary to bone marrow-derived MSCs, ACPCs exhibit no signs of hypertrophic differentiation and therefore hold potential for cartilage repair. As no unique cell marker or marker set has been established to specifically identify ACPCs, isolation and characterization protocols vary greatly. This systematic review summarizes the state-of-the-art research on this promising cell type for use in cartilage repair therapies. It provides an overview of the available literature on endogenous progenitor cells in adult articular cartilage and specifically compares identification of these cell populations in healthy and osteoarthritic (OA) cartilage, isolation procedures, in vitro characterization, and advantages over other cell types used for cartilage repair. The methods for the systematic review were prospectively registered in PROSPERO (CRD42020184775).

6.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34445320

RESUMO

Meniscus injuries can be highly debilitating and lead to knee osteoarthritis. Progenitor cells from the meniscus could be a superior cell type for meniscus repair and tissue-engineering. The purpose of this study is to characterize meniscus progenitor cells isolated by differential adhesion to fibronectin (FN-prog). Human osteoarthritic menisci were digested, and FN-prog were selected by differential adhesion to fibronectin. Multilineage differentiation, population doubling time, colony formation, and MSC surface markers were assessed in the FN-prog and the total meniscus population (Men). Colony formation was compared between outer and inner zone meniscus digest. Chondrogenic pellet cultures were performed for redifferentiation. FN-prog demonstrated multipotency. The outer zone FN-prog formed more colonies than the inner zone FN-prog. FN-prog displayed more colony formation and a higher proliferation rate than Men. FN-prog redifferentiated in pellet culture and mostly adhered to the MSC surface marker profile, except for HLA-DR receptor expression. This is the first study that demonstrates differential adhesion to fibronectin for the isolation of a progenitor-like population from the meniscus. The high proliferation rates and ability to form meniscus extracellular matrix upon redifferentiation, together with the broad availability of osteoarthritis meniscus tissue, make FN-prog a promising cell type for clinical translation in meniscus tissue-engineering.


Assuntos
Adesão Celular , Fibronectinas/metabolismo , Menisco/citologia , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Condrócitos/fisiologia , Condrogênese , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Pessoa de Meia-Idade , Alicerces Teciduais/química
7.
Cartilage ; 13(1_suppl): 1824S-1826S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33467915
8.
Cartilage ; 13(2_suppl): 991S-1003S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32969277

RESUMO

OBJECTIVE: The aims of the study were to assess the anti-inflammatory properties of platelet-rich plasma (PRP) and investigate its regenerative potential in osteoarthritic (OA) human chondrocytes. We hypothesized that PRP can modulate the inflammatory response and stimulate cartilage regeneration. DESIGN: Primary human chondrocytes from OA knees were treated with manually prepared PRP, after which cell migration and proliferation were assessed. Next, tumor necrosis factor-α-stimulated chondrocytes were treated with a range of concentrations of PRP. Expression of genes involved in inflammation and chondrogenesis was determined by real-time polymerase chain reaction. In addition, chondrocytes were cultured in PRP gels and fibrin gels consisting of increasing concentrations of PRP. The production of cartilage extracellular matrix (ECM) was assessed. Deposition and release of glycosaminoglycans (GAG) and collagen was quantitatively determined and visualized by (immuno)histochemistry. Proliferation was assessed by quantitative measurement of DNA. RESULTS: Both migration and the inflammatory response were altered by PRP, while proliferation was stimulated. Expression of chondrogenic markers COL2A1 and ACAN was downregulated by PRP, independent of PRP concentration. Chondrocytes cultured in PRP gel for 28 days proliferated significantly more when compared with chondrocytes cultured in fibrin gels. This effect was dose dependent. Significantly less GAGs and collagen were produced by chondrocytes cultured in PRP gels when compared with fibrin gels. This was qualitatively confirmed by histology. CONCLUSIONS: PRP stimulated chondrocyte proliferation, but not migration. Also, production of cartilage ECM was strongly downregulated by PRP. Furthermore, PRP did not act anti-inflammatory on chondrocytes in an in vitro inflammation model.


Assuntos
Condrócitos , Plasma Rico em Plaquetas , Proliferação de Células , Condrócitos/metabolismo , Humanos , Inflamação/metabolismo , Plasma Rico em Plaquetas/metabolismo , Regeneração
9.
Artigo em Inglês | MEDLINE | ID: mdl-32733874

RESUMO

Osteoarthritis (OA) in articular joints is a prevalent disease. With increasing life expectancy, the need for therapies other than knee replacement arises. The intrinsic repair capacity of cartilage is limited, therefore alternative strategies for cartilage regeneration are being explored. The purpose of this study is first to investigate the potential of platelet lysate (PL) as a xeno-free alternative in expansion of human OA chondrocytes for cell therapy, and second to assess the effects of PL on redifferentiation of expanded chondrocytes in 3D pellet cultures. Chondrocytes were isolated from human OA cartilage and subjected to PL in monolayer culture. Cell proliferation, morphology, and expression of chondrogenic genes were assessed. Next, PL-expanded chondrocytes were cultured in 3D cell pellets and cartilage matrix production was assessed after 28 days. In addition, the supplementation of PL to redifferentiation medium for the culture of expanded chondrocytes in 3D pellets was evaluated. Glycosaminoglycan (GAG) and collagen production were evaluated by quantitative biochemical analyses, as well as by (immuno)histochemistry. A dose-dependent effect of PL on chondrocyte proliferation was found, but expression of chondrogenic markers was decreased when compared to FBS-expanded cells. After 28 days of subsequent 3D pellet culture, GAG production was significantly higher in pellets consisting of chondrocytes expanded with PL compared to controls. However, when used to supplement redifferentiation medium for chondrocyte pellets, PL significantly decreased the production of GAGs and collagen. In conclusion, chondrocyte proliferation is stimulated by PL and cartilage production in subsequent 3D culture is maintained. Furthermore, the presences of PL during redifferentiation of 3D chondrocyte strongly inhibits GAG and collagen content. The data presented in the current study indicate that while the use of PL for expansion in cartilage cell therapies is possibly beneficial, intra-articular injection of the product in the treatment of OA might be questioned.

10.
Stem Cells ; 38(11): 1438-1453, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32652878

RESUMO

Mesenchymal stem cells (MSCs) have been investigated as a potential injectable therapy for the treatment of knee osteoarthritis, with some evidence of success in preliminary human trials. However, optimization and scale-up of this therapeutic approach depends on the identification of functional markers that are linked to their mechanism of action. One possible mechanism is through their chondrogenic differentiation and direct role in neo-cartilage synthesis. Alternatively, they could remain undifferentiated and act through the release of trophic factors that stimulate endogenous repair processes within the joint. Here, we show that extensive in vitro aging of bone marrow-derived human MSCs leads to loss of chondrogenesis but no reduction in trophic repair, thereby separating out the two modes of action. By integrating transcriptomic and proteomic data using Ingenuity Pathway Analysis, we found that reduced chondrogenesis with passage is linked to downregulation of the FOXM1 signaling pathway while maintenance of trophic repair is linked to CXCL12. In an attempt at developing functional markers of MSC potency, we identified loss of mRNA expression for MMP13 as correlating with loss of chondrogenic potential of MSCs and continued secretion of high levels of TIMP1 protein as correlating with the maintenance of trophic repair capacity. Since an allogeneic injectable osteoar therapy would require extensive cell expansion in vitro, we conclude that early passage MMP13+ , TIMP1-secretinghigh MSCs should be used for autologous OA therapies designed to act through engraftment and chondrogenesis, while later passage MMP13- , TIMP1-secretinghigh MSCs could be exploited for allogeneic OA therapies designed to act through trophic repair.


Assuntos
Metaloproteinase 13 da Matriz/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Osteoartrite/terapia , Engenharia Tecidual/métodos , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...