Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(29): 42428-42444, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877192

RESUMO

Iron and steel slags have a long history of both disposal and beneficial use in the coastal zone. Despite the large volumes of slag deposited, comprehensive assessments of potential risks associated with metal(loid) leaching from iron and steel by-products are rare for coastal systems. This study provides a national-scale overview of the 14 known slag deposits in the coastal environment of Great Britain (those within 100 m of the mean high-water mark), comprising geochemical characterisation and leaching test data (using both low and high ionic strength waters) to assess potential leaching risks. The seaward facing length of slag deposits totalled at least 76 km, and are predominantly composed of blast furnace (iron-making) slags from the early to mid-20th Century. Some of these form tidal barriers and formal coastal defence structures, but larger deposits are associated with historical coastal disposal in many former areas of iron and steel production, notably the Cumbrian coast of England. Slag deposits are dominated by melilite phases (e.g. gehlenite), with evidence of secondary mineral formation (e.g. gypsum, calcite) indicative of weathering. Leaching tests typically show lower element (e.g. Ba, V, Cr, Fe) release under seawater leaching scenarios compared to deionised water, largely ascribable to the pH buffering provided by the former. Only Mn and Mo showed elevated leaching concentrations in seawater treatments, though at modest levels (<3 mg/L and 0.01 mg/L, respectively). No significant leaching of potentially ecotoxic elements such as Cr and V (mean leachate concentrations <0.006 mg/L for both) were apparent in seawater, which micro-X-Ray Absorption Near Edge Structure (µXANES) analysis show are both present in slags in low valence (and low toxicity) forms. Although there may be physical hazards posed by extensive erosion of deposits in high-energy coastlines, the data suggest seawater leaching of coastal iron and steel slags in the UK is likely to pose minimal environmental risk.


Assuntos
Monitoramento Ambiental , Ferro , Aço , Ferro/química , Ferro/análise , Poluentes Químicos da Água/análise , Água do Mar/química
2.
Environ Sci Technol ; 57(26): 9854-9864, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37340979

RESUMO

Enhanced weathering is a carbon dioxide (CO2) mitigation strategy that promises large scale atmospheric CO2 removal. The main challenge associated with enhanced weathering is monitoring, reporting, and verifying (MRV) the amount of carbon removed as a result of enhanced weathering reactions. Here, we study a CO2 mineralization site in Consett, Co. Durham, UK, where steel slags have been weathered in a landscaped deposit for over 40 years. We provide new radiocarbon, δ13C, 87Sr/86Sr, and major element data in waters, calcite precipitates, and soils to quantify the rate of carbon removal. We demonstrate that measuring the radiocarbon activity of CaCO3 deposited in waters draining the slag deposit provides a robust constraint on the carbon source being sequestered (80% from the atmosphere, 2σ = 8%) and use downstream alkalinity measurements to determine the proportion of carbon exported to the ocean. The main phases dissolving in the slag are hydroxide minerals (e.g., portlandite) with minor contributions (<3%) from silicate minerals. We propose a novel method for quantifying carbon removal rates at enhanced weathering sites, which is a function of the radiocarbon-apportioned sources of carbon being sequestered, and the proportion of carbon being exported from the catchment to the oceans.


Assuntos
Dióxido de Carbono , Tempo (Meteorologia) , Minerais , Silicatos , Atmosfera
3.
Sci Total Environ ; 643: 1191-1199, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30189535

RESUMO

Vanadium is a toxic metal present in alkaline leachates produced during the weathering of steel slags. Slag leaching can therefore have deleterious effects on local watercourses due to metal toxicity, the effects of the high pH (9-12.5) and rapid carbonation (leading to smothering of benthic communities). We studied the fate and behaviour of V in slag leachate both through field observations of a heavily affected stream (Howden Burn, Consett UK) and in controlled laboratory experiments where slag leachates were neutralised by CO2 ingassing from air. V was found to be removed from leachates downstream from the Howden Burn source contemporaneously with a fall in pH, Ca, Al and Fe concentrations. In the neutralisation experiments pH reduced from 12 → 8, and limited quantities of V were incorporated into precipitated CaCO3. The presence of kaolinite clay (i.e. SiOH and AlOH surfaces) during neutralisation experiments had no measureable effect on V uptake in the alkaline to circumneutral pH range. XANES analysis showed that V was present in precipitates recovered from experiments as adsorbed or incorporated V(V) indicating its likely presence in leachates as the vanadate oxyanion (HVO42-). Nano-scale particles of 2-line ferrihydrite also formed in the neutralised leachates potentially providing an additional sorption surface for V uptake. Indeed, removal of V from leachates was significantly enhanced by the addition of goethite (i.e. FeOOH surfaces) to experiments. EXAFS analysis of recovered goethite samples showed HVO42- was adsorbed by the formation of strong inner-sphere complexes, facilitating V removal from solution at pH < 10. Results show that carbonate formation leads to V removal from leachates during leachate neutralisation, and the presence of both naturally occurring and neoformed Fe (oxy)hydroxides provide a potent sink for V in slag leachates, preventing the spread of V in the environment.

4.
Environ Sci Technol ; 52(14): 7892-7900, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29894185

RESUMO

Carbonate formation in waste from the steel industry could constitute a nontrivial proportion of the global requirements for removing carbon dioxide from the atmosphere at a potentially low cost. To utilize this potential, we examined atmospheric carbon dioxide sequestration in a >20 million ton legacy slag deposit in northern England, United Kingdom. Carbonates formed from the drainage water of the heap had stable carbon and oxygen isotope values between -12 and -25 ‰ and -5 and -18 ‰ for δ13C and δ18O, respectively, suggesting atmospheric carbon dioxide sequestration in high-pH solutions. From the analyses of solution saturation states, we estimate that between 280 and 2900 tons of CO2 have precipitated from the drainage waters. However, by combining a 37 year long data set of the drainage water chemistry with geospatial analysis, we estimate that <1% of the maximum carbon-capture potential of the deposit may have been realized. This implies that uncontrolled deposition of slag is insufficient to maximize carbon sequestration, and there may be considerable quantities of unreacted legacy deposits available for atmospheric carbon sequestration.


Assuntos
Dióxido de Carbono , Aço , Inglaterra , Ferro , Reino Unido
5.
Environ Monit Assess ; 187(7): 463, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26108748

RESUMO

The disposal of slag generated by the steel industry can have negative consequences upon the surrounding aquatic environment by the generation of high pH waters, leaching of potentially problematic trace metals, and rapid rates of calcite precipitation which smother benthic habitats. A 36-year dataset was collated from the long-term ambient monitoring of physicochemical parameters and elemental concentrations of samples from two steel slag leachate-affected watercourses in northern England. Waters were typified by elevated pH (>10), high alkalinity, and were rich in dissolved metals (e.g. calcium (Ca), aluminium (Al), and zinc (Zn)). Long-term trend analysis was performed upon pH, alkalinity, and Ca concentration which, in addition to Ca flux calculations, were used to highlight the longevity of pollution arising as a result of the dumping and subsequent leaching of steel slags. Declines in calcium and alkalinity have been modest over the monitoring period and not accompanied by significant declines in water pH. If the monotonic trends of decline in alkalinity and calcium continue in the largest of the receiving streams, it will be in the region of 50-80 years before calcite precipitation would be expected to be close to baseline levels, where ecological impacts would be negligible.


Assuntos
Resíduos Industriais/análise , Poluentes Químicos da Água/análise , Carbonato de Cálcio/análise , Inglaterra , Meio Ambiente , Monitoramento Ambiental , Metais/análise , Aço , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...