Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 354
Filtrar
1.
Res Sq ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38699363

RESUMO

The endocannabinoid system plays a critical role in modulating both peripheral and central nervous system function. Despite being present throughout the animal kingdom, there has been relatively little investigation of the endocannabinoid system beyond the traditional animal model systems. In this study, we report on the identification and characterization of a fatty acid aminohydrolase (FAAH) in the medicinal leech, Hirudo verbana. FAAH is the primary enzyme responsible for metabolizing the endocannabinoid signaling molecule arachidonoyl ethanolamide (anandamide or AEA) and therefore plays a critical role in regulating AEA levels in the nervous system. This Hirudo FAAH (HirFAAH) is expressed in the leech central nervous system (CNS) and is an orthologue of FAAH-2 observed in vertebrates. Functionally, HirFAAH has serine hydrolase activity based on activity-based protein profiling (ABPP) studies using the fluorophosphonate probe TAMRA-FP. HirFAAH also hydrolyzes arachidonyl 7-amino, 4-methyl coumarin amide (AAMCA), a substrate specific to FAAH. Hydrolase activity during both the ABPP and AAMCA assays was eliminated by mutation at a conserved activity-binding site. Activity was also blocked by the known FAAH inhibitor, URB597. Treatment of Hirudo ganglia with URB597 potentiated synapses made by the pressure-sensitive mechanosensory neuron (P cell), mimicking the effects of exogenously applied AEA. The Hirudo CNS has been a useful system in which to study properties of endocannabinoid modulation of nociception relevant to vertebrates. Therefore, this characterization of HirFAAH is an important contribution to comparative studies of the endocannabinoid system.

2.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659897

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a morbid fibrotic lung disease with limited treatment options. The pathophysiology of IPF remains poorly understood, and elucidation of the cellular and molecular mechanisms of IPF pathogenesis is key to the development of new therapeutics. B-1 cells are an innate B cell population which play an important role linking innate and adaptive immunity. B-1 cells spontaneously secrete natural IgM and prevent inflammation in several disease states. One class of these IgM recognize oxidation-specific epitopes (OSE), which have been shown to be generated in lung injury and to promote fibrosis. A main B-1 cell reservoir is the pleural space, adjacent to the typical distribution of fibrosis in IPF. In this study, we demonstrate that B-1 cells are recruited to the lung during injury where they secrete IgM to OSE (IgM OSE ). We also show that the pleural B-1 cell reservoir responds to lung injury through regulation of the chemokine receptor CXCR4. Mechanistically we show that the transcription factor Id3 is a novel negative regulator of CXCR4 expression. Using mice with B-cell specific Id3 deficiency, a model of increased B-1b cells, we demonstrate decreased bleomycin-induced fibrosis compared to littermate controls. Furthermore, we show that mice deficient in secretory IgM ( sIgM -/- ) have higher mortality in response to bleomycin-induced lung injury, which is partially mitigated through airway delivery of the IgM OSE E06. Additionally, we provide insight into potential mechanisms of IgM in attenuation of fibrosis through RNA sequencing and pathway analysis, highlighting complement activation and extracellular matrix deposition as key differentially regulated pathways.

3.
Am J Respir Cell Mol Biol ; 71(1): 23-29, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593005

RESUMO

Investigations into the mechanisms of injury and repair in fibroproliferative disease require consideration of the spatial heterogeneity inherent in the disease. Most scoring of fibrotic remodeling in preclinical animal models relies on the modified Ashcroft score, which is an ordinal rubric of macroscopic resolution. The obvious limitations of manual histopathologic scoring have generated an unmet need for unbiased, repeatable scoring of fibroproliferative burden in tissue. Using computer vision approaches on immunofluorescence imaging of the extracellular matrix component laminin, we generated a robust and repeatable quantitative remodeling scorer. In the bleomycin lung injury model, the quantitative remodeling scorer shows significant agreement with the modified Ashcroft scale. This antibody-based approach is easily integrated into larger multiplex immunofluorescence experiments, which we demonstrate by testing the spatial apposition of tertiary lymphoid structures to fibroproliferative tissue, a poorly characterized phenomenon observed in both human interstitial lung diseases and preclinical models of lung fibrosis. The tool reported in this article is available as a stand-alone application that is usable without programming knowledge.


Assuntos
Bleomicina , Laminina , Fibrose Pulmonar , Laminina/metabolismo , Animais , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/induzido quimicamente , Pulmão/patologia , Pulmão/metabolismo , Camundongos , Lesão Pulmonar/patologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/induzido quimicamente , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Estruturas Linfoides Terciárias/patologia , Estruturas Linfoides Terciárias/imunologia , Humanos , Imunofluorescência , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia
4.
Adv Healthc Mater ; : e2400249, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648258

RESUMO

The inflammatory foreign body response (FBR) is the main driver of biomaterial implant failure. Current strategies to mitigate the onset of a FBR include modification of the implant surface, release of anti-inflammatory drugs, and cell-scale implant porosity. The microporous annealed particle (MAP) scaffold platform is an injectable, porous biomaterial composed of individual microgels, which are annealed in situ to provide a structurally stable scaffold with cell-scale microporosity. MAP scaffold does not induce a discernible foreign body response in vivo and, therefore, can be used a "blank canvas" for biomaterial-mediated immunomodulation. Damage associated molecular patterns (DAMPs), such as IL-33, are potent regulators of type 2 immunity that play an important role in tissue repair. In this manuscript, IL-33 is conjugated to the microgel building-blocks of MAP scaffold to generate a bioactive material (IL33-MAP) capable of stimulating macrophages in vitro via a ST-2 receptor dependent pathway and modulating immune cell recruitment to the implant site in vivo, which indicates an upregulation of a type 2-like immune response and downregulation of a type 1-like immune response.

5.
Pharmaceutics ; 16(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38543292

RESUMO

Designing spray-dried particles for inhalation aims at specific physicochemical properties including a respirable aerodynamic diameter and adequate powder dispersibility. Leucine, an amphiphilic amino acid, has been shown to aid in optimizing bulk powder properties. Mannitol, a model crystalline active and common bulking agent, was co-sprayed with leucine at several excipient ratios, ethanol/water ratios, and spray dryer outlet temperatures in order to experimentally probe the underlying particle formation mechanisms in this binary crystalline system. During the droplet drying of two crystallizing components, the material that nucleates first will preferentially enrich the surface. It is desired to have a completely crystalline leucine shell to improve powder properties, however, mannitol competes with leucine for the surface depending on excipient concentration and manufacturing parameters. The resulting particles were studied initially and at a two-month timepoint via solid state characterization, visual analysis, and particle size analysis in order to detect changes in bulk powder properties. It was determined that, similar to systems where only leucine can crystallize, initial leucine saturation in the formulation dictates powder characteristics.

6.
Int J Womens Dermatol ; 10(1): e134, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332994

RESUMO

Background: In recent years, self-tanners have become a well-liked alternative to sun tanning and tanning bed usage, as strikingly similar results can be achieved without the harmful side effects of ultraviolet exposure. Objective: The aim of this study is to investigate the presence and prevalence of potential allergens in the most popular self-tanning products. Methods: Five major retailers in the United States were evaluated, from which 17 different brands and 44 unique self-tanning products were analyzed. The ingredients in each self-tanning product were compared with 80 and 36 notable contact allergens taken from the North American Contact Dermatitis Group and Food and Drug Administration-approved T.R.U.E (Thin-Layer Rapid Use Epicutaneous Patch Test), respectively. Results: We found that contact allergens are frequently present in self-tanning products; allergens especially common are propylene glycol, linalool, polysorbate, d-limonene, benzyl alcohol, tocopherol (vitamin E), fragrances, and other scented botanicals. On average, each self-tanner we analyzed contained 11.86 allergens. Limitations: The limitation is that commercial names could not be eliminated from the analysis, introducing potential bias. Conclusion: While self-tanning products are a safer alternative to tanning bed use or sunbathing, consumers and clinicians alike must be aware that they may cause an allergic reaction of the skin for some users.

7.
Heliyon ; 9(8): e19226, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37664715

RESUMO

A life-threatening manifestation of Covid-19 infection is a cytokine storm that requires hospitalization and supplemental oxygen. Various strategies to reduce inflammatory cytokines have had some success in limiting cytokine storm and improving survival. Agonists of adenosine A2A receptors (A2AR) reduce cytokine release from most immune cells. Apadenoson is a potent and selective anti-inflammatory adenosine analog that reduces inflammation. When administered by subcutaneous osmotic pumps to mice infected with SARS CoV-2, Apadenoson was found to improve the outcomes of infection as measured by a decrease in weight loss, improved clinical symptoms, reduced levels of proinflammatory cytokines and chemokines in bronchial lavage (BAL) fluid, and enhanced survival of K18-hACE2 transgenic mice. These results support further examination of A2AR agonists as therapies for treating cytokine storm due to COVID-19.

8.
bioRxiv ; 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37398271

RESUMO

Investigations into the mechanisms of injury and repair in pulmonary fibrosis require consideration of the spatial heterogeneity inherent in the disease. Most scoring of fibrotic remodeling in preclinical animal models rely on the modified Ashcroft score, which is a semi-quantitative scoring rubric of macroscopic resolution. The obvious limitations inherent in manual pathohistological grading have generated an unmet need for unbiased, repeatable scoring of fibroproliferative burden in tissue. Using computer vision approaches on immunofluorescent imaging of the extracellular matrix (ECM) component laminin, we generate a robust and repeatable quantitative remodeling scorer (QRS). In the bleomycin lung injury model, QRS shows significant agreement with modified Ashcroft scoring with a significant Spearman coefficient r=0.768. This antibody-based approach is easily integrated into larger multiplex immunofluorescent experiments, which we demonstrate by testing the spatial apposition of tertiary lymphoid structures (TLS) to fibroproliferative tissue. The tool reported in this manuscript is available as a standalone application which is usable without programming knowledge.

9.
Proc Natl Acad Sci U S A ; 120(31): e2217033120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487063

RESUMO

Type I spiral ganglion neurons (SGNs) are the auditory afferents that transmit sound information from cochlear inner hair cells (IHCs) to the brainstem. These afferents consist of physiological subtypes that differ in their spontaneous firing rate (SR), activation threshold, and dynamic range and have been described as low, medium, and high SR fibers. Lately, single-cell RNA sequencing experiments have revealed three molecularly defined type I SGN subtypes. The extent to which physiological type I SGN subtypes correspond to molecularly defined subtypes is unclear. To address this question, we have generated mouse lines expressing CreERT2 in SGN subtypes that allow for a physiological assessment of molecular subtypes. We show that Lypd1-CreERT2 expressing SGNs represent a well-defined group of neurons that preferentially innervate the IHC modiolar side and exhibit a narrow range of low SRs. In contrast, Calb2-CreERT2 expressing SGNs preferentially innervate the IHC pillar side and exhibit a wider range of SRs, thus suggesting that a strict stratification of all SGNs into three molecular subclasses is not obvious, at least not with the CreERT2 tools used here. Genetically marked neuronal subtypes refine their innervation specificity onto IHCs postnatally during the time when activity is required to refine their molecular phenotype. Type I SGNs thus consist of genetically defined subtypes with distinct physiological properties and innervation patterns. The molecular subtype-specific lines characterized here will provide important tools for investigating the role of the physiologically distinct type I SGNs in encoding sound signals.


Assuntos
Tronco Encefálico , Células Ciliadas Vestibulares , Animais , Camundongos , Cóclea , Células Ciliadas Auditivas Internas , Neurônios
10.
J Neurophysiol ; 129(4): 807-818, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36883763

RESUMO

Noxious stimuli or injury can trigger long-lasting sensitization to non-nociceptive stimuli (referred to as allodynia in mammals). Long-term potentiation (LTP) of nociceptive synapses has been shown to contribute to nociceptive sensitization (hyperalgesia) and there is even evidence of heterosynaptic spread of LTP contributing to this type of sensitization. This study will focus on how activation of nociceptors elicits heterosynaptic LTP (hetLTP) in non-nociceptive synapses. Previous studies in the medicinal leech (Hirudo verbana) have demonstrated that high-frequency stimulation (HFS) of nociceptors produces both homosynaptic LTP as well as hetLTP in non-nociceptive afferent synapses. This hetLTP involves endocannabinoid-mediated disinhibition of non-nociceptive synapses at the presynaptic level, but it is not clear if there are additional processes contributing to this synaptic potentiation. In this study, we found evidence for the involvement of postsynaptic level change and observed that postsynaptic N-methyl-d-aspartate (NMDA) receptors (NMDARs) were required for this potentiation. Next, Hirudo orthologs for known LTP signaling proteins, CamKII and PKCζ, were identified based on sequences from humans, mice, and the marine mollusk Aplysia. In electrophysiological experiments, inhibitors of CamKII (AIP) and PKCζ (ZIP) were found to interfere with hetLTP. Interestingly, CamKII was found to be necessary for both induction and maintenance of hetLTP, whereas PKCζ was only necessary for maintenance. These findings show that activation of nociceptors can elicit a potentiation of non-nociceptive synapses through a process that involves both endocannabinoid-mediated disinhibition and NMDAR-initiated signaling pathways.NEW & NOTEWORTHY Pain-related sensitization involves increases in signaling by non-nociceptive sensory neurons. This can allow non-nociceptive afferents to have access to nociceptive circuitry. In this study, we examine a form of synaptic potentiation in which nociceptor activity elicits increases in non-nociceptive synapses. This process involves endocannabinoids, "gating" the activation of NMDA receptors, which in turn activate CamKII and PKCζ. This study provides an important link in how nociceptive stimuli can enhance non-nociceptive signaling related to pain.


Assuntos
Endocanabinoides , Potenciação de Longa Duração , Humanos , Animais , Camundongos , Endocanabinoides/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia , Dor , Mamíferos/metabolismo
11.
Microbiol Resour Announc ; 12(3): e0131922, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36840560

RESUMO

We report the draft genome sequences of three bacterial species isolated from freshwater ponds or features around monuments in Washington, DC, during a semester-long microbiology lab course at the George Washington University. Two of the isolates belong to potentially novel species but lost their viability and could not be revived.

12.
Neuropsychopharmacology ; 47(8): 1537-1549, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35478010

RESUMO

Withdrawal symptoms are observed upon cessation of cannabis use in humans. Although animal studies have examined withdrawal symptoms following exposure to delta-9-tetrahydrocannabinol (THC), difficulties in obtaining objective measures of spontaneous withdrawal using paradigms that mimic cessation of use in humans have slowed research. The neuromodulator dopamine (DA) is affected by chronic THC treatment and plays a role in many behaviors related to human THC withdrawal symptoms. These symptoms include sleep disturbances that often drive relapse, and emotional behaviors like irritability and anhedonia. We examined THC withdrawal-induced changes in striatal DA release and the extent to which sleep disruption and behavioral maladaptation manifest during abstinence in a mouse model of chronic THC exposure. Using a THC treatment regimen known to produce tolerance, we measured electrically elicited DA release in acute brain slices from different striatal subregions during early and late THC abstinence. Long-term polysomnographic recordings from mice were used to assess vigilance state and sleep architecture before, during, and after THC treatment. We additionally assessed how behaviors that model human withdrawal symptoms are altered by chronic THC treatment in early and late abstinence. We detected altered striatal DA release, sleep disturbances that mimic clinical observations, and behavioral maladaptation in mice following tolerance to THC. Altered striatal DA release, sleep, and affect-related behaviors associated with spontaneous THC abstinence were more consistently observed in male mice. These findings provide a foundation for preclinical study of directly translatable non-precipitated THC withdrawal symptoms and the neural mechanisms that affect them.


Assuntos
Dronabinol , Síndrome de Abstinência a Substâncias , Animais , Agonistas de Receptores de Canabinoides , Dopamina , Dronabinol/farmacologia , Feminino , Masculino , Camundongos , Sono , Síndrome de Abstinência a Substâncias/tratamento farmacológico
13.
Front Synaptic Neurosci ; 14: 760330, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368247

RESUMO

Endocannabinoids are lipid neuromodulators that are synthesized on demand and primarily signal in a retrograde manner to elicit depression of excitatory and inhibitory synapses. Despite the considerable interest in their potential analgesic effects, there is evidence that endocannabinoids can have both pro-nociceptive and anti-nociceptive effects. The mechanisms contributing to the opposing effects of endocannabinoids in nociception need to be better understood before cannabinoid-based therapies can be effectively utilized to treat pain. Using the medicinal leech, Hirudo verbana, this work investigates whether endocannabinoids modulate tonic inhibition onto non-nociceptive afferents. In voltage clamp recordings, we analyzed changes in the tonic inhibition in pressure-sensitive (P) cells following pre-treatment with endocannabinoids, 2-arachidonoylglycerol (2-AG) or anandamide (AEA). We also tested whether high frequency stimulation (HFS) of nociceptive (N) cells could also modulate tonic inhibition. Both endocannabinoid application and N cell HFS depressed tonic inhibition in the P cell. Depression of tonic inhibition by N cell HFS was blocked by SB 366791 (a TRPV1 inhibitor). SB 366791 also prevented 2-AG-and AEA-induced depression of tonic inhibition. HFS-induced depression was not blocked by tetrahydrolipstatin (THL), which prevents 2-AG synthesis, nor AM 251 (a CB1 receptor inverse agonist). These results illustrate a novel activity-dependent modulation of tonic GABA currents that is mediated by endocannabinoid signaling and is likely to play an important role in sensitization of non-nociceptive afferent pathways.

14.
Front Cell Dev Biol ; 10: 812429, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386207

RESUMO

Background: Fetal alcohol spectrum disorders (FASD) represent a leading cause of non-genetic neuropathologies. Recent preclinical evidence from suggests that prenatal ethanol exposure (PrEE), like other environmental exposures, may have a significant, transgenerational impact on the offspring of directly exposed animals, including altered neocortical development at birth and behavior in peri-pubescent mice. How these adverse behavioral outcomes are manifested within the brain at the time of behavioral disruption remains unknown. Methods: A transgenerational mouse model of FASD was used to generate up to a third filial generation of offspring to study. Using a multi-modal battery of behavioral assays, we assessed motor coordination/function, sensorimotor processing, risk-taking behavior, and depressive-like behavior in postnatal day (P) 20 pre-pubescent mice. Additionally, sensory neocortical area connectivity using dye tracing, neocortical gene expression using in situ RNA hybridization, and spine density of spiny stellate cells in the somatosensory cortex using Golgi-Cox staining were examined in mice at P20. Results: We found that PrEE induces behavioral abnormalities including abnormal sensorimotor processing, increased risk-taking behavior, and increased depressive-like behaviors that extend to the F3 generation in 20-day old mice. Assessment of both somatosensory and visual cortical connectivity, as well as cortical RZRß expression in pre-pubescent mice yielded no significant differences among any experimental generations. In contrast, only directly-exposed F1 mice displayed altered cortical expression of Id2 and decreased spine density among layer IV spiny stellate cells in somatosensory cortex at this pre-pubescent, post weaning age. Conclusion: Our results suggest that robust, clinically-relevant behavioral abnormalities are passed transgenerationally to the offspring of mice directly exposed to prenatal ethanol. Additionally, in contrast to our previous findings in the newborn PrEE mouse, a lack of transgenerational findings within the brain at this later age illuminates the critical need for future studies to attempt to discover the link between neurological function and the described behavioral changes. Overall, our study suggests that multi-generational effects of PrEE may have a substantial impact on human behavior as well as health and well-being and that these effects likely extend beyond early childhood.

15.
Matrix Biol Plus ; 10: 100056, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34195593

RESUMO

Of the many origins of pulmonary myofibroblasts, microvascular pericytes are a known source. Prior literature has established the ability of pericytes to transition into myofibroblasts, but provide limited insight into molecular cues that drive this process during lung injury repair and fibrosis. Fibronectin and RGD-binding integrins have long been considered pro-fibrotic factors in myofibroblast biology, and here we test the hypothesis that these known myofibroblast cues coordinate pericyte-to-myofibroblast transitions. Specifically, we hypothesized that αvß3 integrin engagement on fibronectin induces pericyte transition into myofibroblastic phenotypes in the murine bleomycin lung injury model. Myosin Heavy Chain 11 (Myh11)-CreERT2 lineage tracing in transgenic mice allows identification of cells of pericyte origin and provides a robust tool for isolating pericytes from tissues for further evaluation. We used this murine model to track and characterize pericyte behaviors during tissue repair. The majority of Myh11 lineage-positive cells are positive for the pericyte surface markers, PDGFRß (55%) and CD146 (69%), and display typical pericyte morphology with spatial apposition to microvascular networks. After intratracheal bleomycin treatment of mice, Myh11 lineage-positive cells showed significantly increased contractile and secretory markers, as well as αv integrin expression. According to RNASeq measurements, many disease and tissue-remodeling genesets were upregulated in Myh11 lineage-positive cells in response to bleomycin-induced lung injury. In vitro, blocking αvß3 binding through cycloRGDfK prevented expression of the myofibroblastic marker αSMA relative to controls. In response to RGD-containing provisional matrix proteins present in lung injury, pericytes may alter their integrin profile.

16.
Plant Physiol ; 185(4): 1682-1696, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893814

RESUMO

Increasing sea levels associated with climate change threaten the survival of coastal forests, yet the mechanisms by which seawater exposure causes tree death remain poorly understood. Despite the potentially crucial role of nonstructural carbohydrate (NSC) reserves in tree survival, their dynamics in the process of death under seawater exposure are unknown. Here we monitored progressive tree mortality and associated NSC storage in Sitka-spruce (Picea sitchensis) trees dying under ecosystem-scale increases in seawater exposure in western Washington, USA. All trees exposed to seawater, because of monthly tidal intrusion, experienced declining crown foliage during the sampling period, and individuals with a lower percentage of live foliated crown (PLFC) died faster. Tree PLFC was strongly correlated with subsurface salinity and needle ion contents. Total NSC concentrations in trees declined remarkably with crown decline, and reached extremely low levels at tree death (2.4% and 1.6% in leaves and branches, respectively, and 0.4% in stems and roots). Starch in all tissues was almost completely consumed, while sugars remained at a homeostatic level in foliage. The decreasing NSC with closer proximity to death and near zero starch at death are evidences that carbon starvation occurred during Sitka-spruce mortality during seawater exposure. Our results highlight the importance of carbon storage as an indicator of tree mortality risks under seawater exposure.


Assuntos
Metabolismo dos Carboidratos , Carboidratos/análise , Picea/química , Picea/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Estresse Salino , Água do Mar/efeitos adversos , Causas de Morte , Salinidade , Washington
17.
J Hosp Infect ; 113: 44-51, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33775742

RESUMO

BACKGROUND: Little is known about Clostridioides difficile infection (CDI) in patients with cystic fibrosis (CF). The aim of this study was to investigate the prevalence, molecular epidemiology and risk factors for CDI in asymptomatic and symptomatic adults with CF in Western Australia. METHODS: Faecal samples from symptomatic and asymptomatic patients were prospectively collected and tested for the presence of C. difficile by toxigenic culture. Ribotyping was performed by established protocols. Logistic regression analysis was performed to analyse the risk factors for C. difficile colonization and infection. Extensive environmental sampling was performed within the CF clinic in Perth. RESULTS: The prevalence rates of asymptomatic toxigenic and non-toxigenic C. difficile colonization were 30% (14/46 patients) and 24% (11/46 patients), respectively. Fifteen ribotypes (RTs) of C. difficile were identified, of which non-toxigenic RT 039 was the most common. Among the symptomatic patients, the prevalence of toxigenic CDI was 33% (11/33 patients). Impaired glucose tolerance/diabetes mellitus and duration of intravenous antibiotic use in the past 12 months were significantly associated with increased risk of asymptomatic toxigenic C. difficile carriage and CDI. A trend towards higher CF transmembrane conductance regulator modulator treatment was observed in the CDI group. Extensive environmental sampling showed no evidence of toxigenic C. difficile contamination within the CF clinic. CONCLUSIONS: A high prevalence of asymptomatic carriage of toxigenic C. difficile was observed in adults with CF, comparable with that observed in the symptomatic CF population. There was no evidence of direct person-to-person transmission.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Fibrose Cística , Adulto , Austrália/epidemiologia , Clostridioides , Clostridioides difficile/genética , Infecções por Clostridium/epidemiologia , Fibrose Cística/complicações , Fibrose Cística/epidemiologia , Humanos
18.
Dalton Trans ; 49(29): 10173-10184, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32666974

RESUMO

1,10-Phenanthroline (phen) was grafted to either indium tin oxide (ITO), fluorine-doped tin oxide (FTO), or titanium dioxide (TiO2) semiconductors (SC's) by electrochemical reduction of 5-diazo-phen. The phen ligand is bonded to the semiconductor at C5, and it can be handled in air. The semiconductor-phen (SC-phen) complexes displace both CH3CN ligands from either cis-[Ru(Mebipy)2(CH3CN)2]2+ (Mebipy = 4,4'-methyl-2,2'-bipyridine), cis-[Ru(tBubipy)2(CH3CN)2]2+ (tBubipy = 4,4'-tert-butyl-2,2'-bipyridine), or cis-[Ru(pheno)(bipy)(CH3CN)2]2+ (bipy = 2,2'-bipyridine; pheno = 1,10-phenanthroline-5,6-dione) dissolved in DCM/THF (4 h, 70 °C) to form the corresponding surface-bound SC-[(phen)Ru(bipyridyl)2]2+ chromophores. The identities of the SC-[(phen)Ru(Mebipy)2]2+, SC-[(phen)Ru(tBubipy)2]2+, and SC-[(phen)Ru(pheno)(bipy)]2+ (SC = ITO, FTO or TiO2) chromophores were confirmed by X-ray photoelectron spectroscopy (XPS); inductively coupled plasma mass spectrometry (ICP-MS); UV-vis and reflectance infrared spectroscopies; and cyclic voltammetry (CV). The data were compared to analogous Ru-polypyridyl control compounds dissolved in solution. A facile ketone-amine condensation solid-phase synthesis reaction between SC-[(phen)Ru(pheno)(bipy)]2+ and [Ru(1,10-phenthroline-5,6-diamine)(bipy)2]2+ in ethanol (80 °C, 1 h) formed the dinuclear, bound chromophore SC-[(phen)(bipy)Ru(tpphz)Ru(bipy)2]4+ (tpphz = tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine). Photoelectrochemical oxidation of hydroquinone and triethylamine under acidic, neutral, or basic conditions showed that the SC-chromophore photoanodes are active, and that TiO2-[(phen)Ru(Mebipy)2]2+ is the most active and stable under basic- and neutral conditions. The dinuclear chromophore SC-[(phen)(bipy)Ru(tpphz)Ru(bipy)2]4+ was most active and stable under potentiostatic conditions in acid.

19.
Matrix Biol ; 91-92: 35-50, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32438056

RESUMO

The architectural complexity of the lung is crucial to its ability to function as an organ of gas exchange; the branching tree structure of the airways transforms the tracheal cross-section of only a few square centimeters to a blood-gas barrier with a surface area of tens of square meters and a thickness on the order of a micron or less. Connective tissue comprised largely of collagen and elastic fibers provides structural integrity for this intricate and delicate system. Homeostatic maintenance of this connective tissue, via a balance between catabolic and anabolic enzyme-driven processes, is crucial to life. Accordingly, when homeostasis is disrupted by the excessive production of connective tissue, lung function deteriorates rapidly with grave consequences leading to chronic lung conditions such as pulmonary fibrosis. Understanding how pulmonary fibrosis develops and alters the link between lung structure and function is crucial for diagnosis, prognosis, and therapy. Further information gained could help elaborate how the healing process breaks down leading to chronic disease. Our understanding of fibrotic disease is greatly aided by the intersection of wet lab studies and mathematical and computational modeling. In the present review we will discuss how multi-scale modeling has facilitated our understanding of pulmonary fibrotic disease as well as identified opportunities that remain open and have produced techniques that can be incorporated into this field by borrowing approaches from multi-scale models of fibrosis beyond the lung.


Assuntos
Tecido Elástico/metabolismo , Proteínas da Matriz Extracelular/genética , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Modelos Biológicos , Doença Crônica , Simulação por Computador , Tecido Conjuntivo/metabolismo , Tecido Conjuntivo/patologia , Citocinas/genética , Citocinas/metabolismo , Tecido Elástico/química , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Homeostase/genética , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Inflamação , Pulmão/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...