Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2070, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267517

RESUMO

Endophytes isolated from extremophile plants are interesting microbes for improving the stress tolerance of agricultural plants. Here, we isolated and characterized endophytic bacteria showing plant growth-promoting (PGP) traits from plants in two extreme Chilean biomes (Atacama Desert and Chilean Patagonia). Forty-two isolates were characterized as both halotolerant auxin producers (2-51 mg L-1) and 1-aminocyclopropane-1-carboxylate (ACC)-degrading bacteria (15-28 µmol αKB mg protein-1 h-1). The most efficient isolates were tested as single strains, in dual and triple consortia, or in combination with previously reported PGP rhizobacteria (Klebsiella sp. 27IJA and 8LJA) for their impact on the germination of salt-exposed (0.15 M and 0.25 M NaCl) wheat seeds. Interestingly, strain P1R9, identified as Variovorax sp., enhanced wheat germination under salt stress conditions when applied individually or as part of bacterial consortia. Under salt stress, plants inoculated with dual consortia containing the strain Variovorax sp. P1R9 showed higher biomass (41%) and reduced lipid peroxidation (33-56%) than uninoculated plants. Although the underlying mechanisms remain elusive, our data suggest that the application of Variovorax sp. P1R9, alone or as a member of PGP consortia, may improve the salt stress tolerance of wheat plants.


Assuntos
Comamonadaceae , Magnésio , Radioisótopos , Triticum , Estresse Salino , Desenvolvimento Vegetal , Tolerância ao Sal
2.
Microb Ecol ; 86(3): 1513-1533, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36752910

RESUMO

Lake Villarrica, one of Chile's main freshwater water bodies, was recently declared a nutrient-saturated lake due to increased phosphorus (P) and nitrogen (N) levels. Although a decontamination plan based on environmental parameters is being established, it does not consider microbial parameters. Here, we conducted high-throughput DNA sequencing and quantitative polymerase chain reaction (qPCR) analyses to reveal the structure and functional properties of bacterial communities in surface sediments collected from sites with contrasting anthropogenic pressures in Lake Villarrica. Alpha diversity revealed an elevated bacterial richness and diversity in the more anthropogenized sediments. The phylum Proteobacteria, Bacteroidetes, Acidobacteria, and Actinobacteria dominated the community. The principal coordinate analysis (PCoA) and redundancy analysis (RDA) showed significant differences in bacterial communities of sampling sites. Predicted functional analysis showed that N cycling functions (e.g., nitrification and denitrification) were significant. The microbial co-occurrence networks analysis suggested Chitinophagaceae, Caldilineaceae, Planctomycetaceae, and Phycisphaerae families as keystone taxa. Bacterial functional genes related to P (phoC, phoD, and phoX) and N (nifH and nosZ) cycling were detected in all samples by qPCR. In addition, an RDA related to N and P cycling revealed that physicochemical properties and functional genes were positively correlated with several nitrite-oxidizing, ammonia-oxidizing, and N-fixing bacterial genera. Finally, denitrifying gene (nosZ) was the most significant factor influencing the topological characteristics of co-occurrence networks and bacterial interactions. Our results represent one of a few approaches to elucidate the structure and role of bacterial communities in Chilean lake sediments, which might be helpful in conservation and decontamination plans.


Assuntos
Bactérias , Lagos , Humanos , Lagos/microbiologia , Chile , Bactérias/genética , Proteobactérias/genética , Genes Bacterianos , Bacteroidetes/genética , Sedimentos Geológicos/microbiologia
3.
J Environ Manage ; 320: 115906, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36056497

RESUMO

Phosphorus (P) cycling by microbial activity is highly relevant in the eutrophication of lakes. In this context, the contents of organic (Po) and inorganic (Pi) phosphorus, the activity of acid (ACP) and alkaline (ALP) phosphomonoesterase (Pase), and the abundances of bacterial Pase genes (phoD, phoC, and phoX) were studied in sediments from Budi Lake, a eutrophic coastal brackish water lake in Chile. Our results showed spatiotemporal variations in P fractions, Pase activities, and Pase gene abundances. In general, our results showed higher contents of Pi (110-144 mg kg-1), Po (512-576 mg kg-1), and total P (647-721 mg kg-1) in sediments from the more anthropogenized sampling sites in summer compared with those values of Pi (86-127 mg kg-1), Po (363-491 mg kg-1) and total P (449-618 mg kg-1) in less anthropogenized sampling sites in winter. In concordance, sediments showed higher Pase activities (µg nitrophenyl phosphate g-1 h-1) in sediments from the more anthropogenized sampling sites (9.7-22.7 for ACP and 5.9 to 9.6 for ALP) compared with those observed in less anthropogenized sampling sites in winter (4.2-12.9 for ACP and 0.3 to 6.7 for ALP). Higher abundances (gene copy g-1 sediment) of phoC (8.5-19 × 108), phoD (9.2-47 × 106), and phoX (8.5-26 × 106) genes were also found in sediments from the more anthropogenized sampling sites in summer compared with those values of phoC (0.1-1.1 × 108), phoD (1.4-2.4 × 106) and phoX (0.7-1.2 × 106) genes in the less anthropogenized sites in winter. Our results also showed a positive correlation between P contents, Pase activities, and abundances of bacterial Pase genes, independent of seasonality. The present study provided information on the microbial activity involved in P cycling in sediments of Budi Lake, which may be used in further research as indicators for the monitoring of eutrophication of lakes.


Assuntos
Lagos , Poluentes Químicos da Água , Chile , China , Monitoramento Ambiental/métodos , Eutrofização , Sedimentos Geológicos , Monoéster Fosfórico Hidrolases , Fósforo/análise , Águas Salinas , Poluentes Químicos da Água/análise
4.
Microorganisms ; 9(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206618

RESUMO

Azospirillum-based plant and soil inoculants are widely used in agriculture. The inoculated Azospirillum strains are commonly tracked by both culture-dependent and culture-independent methods, which are time-consuming or expensive. In this context, clustered regularly interspaced short palindromic repeats (CRISPR) loci structure is unique in the bacterial genome, including some Azospirillum species. Here, we investigated the use of CRISPR loci to track specific Azospirillum strains in soils systems by PCR. Primer sets for Azospirillum sp. strain B510 were designed and evaluated by colony and endpoint PCR. The CRISPRloci-PCR approach was standardized for Azospirillum sp. strain B510, and its specificity was observed by testing against 9 different Azospirillum strains, and 38 strains of diverse bacterial genera isolated from wheat plants. The CRISPRloci-PCR approach was validated in assays with substrate and wheat seedlings. Azospirillum sp. strain B510 was detected after of two weeks of inoculation in both sterile and nonsterile substrates as well as rhizosphere grown in sterile substrate. The CRISPRloci-PCR approach was found to be a useful molecular tool for specific tracking of Azospirillum at the strain level. This technique can be easily adapted to other microbial inoculants carrying CRISPR loci and can be used to complement other microbiological techniques.

5.
Front Microbiol ; 9: 2710, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524385

RESUMO

Acidic ash derived volcanic soils (Andisols) support 50% of cereal production in Chile. Nitrogen (N) is essential for cereal crops and commonly added as urea with consequent environmental concerns due to leaching. Despite the relevance of N to plant growth, few studies have focused on understanding the application, management and ecological role of N2-fixing bacterial populations as tool for improve the N nutrition of cereal crops in Chile. It is known that N2-fixing bacteria commonly inhabits diverse plant compartments (e.g., rhizosphere and root endosphere) where they can supply N for plant growth. Here, we used culture-independent and dependent approaches to characterize and compare the putative N2-fixing bacteria associated with the rhizosphere and root endosphere of wheat plants grown in an Andisol from southern Chile. Our results showed significantly greater bacterial loads in the rhizosphere than the root endosphere. Quantitative PCR results indicated that the copy number of the 16S rRNA gene ranged from 1012~1013 and 107~108 g-1 sample in rhizosphere and root endosphere, respectively. The nifH gene copy number ranged from 105~106 and 105 g-1 sample in rhizosphere and root endosphere, respectively. The total culturable bacteria number ranged from 109~1010 and 107~108 CFU g-1 sample in rhizosphere and 104~105 and 104 CFU g-1 sample in root endosphere using LB and NM-1 media, respectively. Indirect counts of putative N2-fixing bacteria were 103 and 102~103 CFU g-1 sample in rhizosphere and root endosphere using NFb medium, respectively. Sequencing of 16S rRNA genes from randomly selected putative N2-fixing bacteria revealed the presence of members of Proteobacteria (Bosea and Roseomonas), Actinobacteria (Georgenia, Mycobacterium, Microbacterium, Leifsonia, and Arthrobacter), Bacteroidetes (Chitinophaga) and Firmicutes (Bacillus and Psychrobacillus) taxa. Differences in 16S rRNA and putative nifH-containing bacterial communities between rhizosphere and root endosphere were shown by denaturing gradient gel electrophoresis (DGGE). This study shows a compartmentalization between rhizosphere and root endosphere for both the abundance and diversity of total (16S rRNA) and putative N2-fixing bacterial communities on wheat plants grown in Chilean Andisols. This information can be relevant for the design and application of agronomic strategies to enhance sustainable N-utilization in cereal crops in Chile.

7.
Microb Ecol ; 72(3): 633-46, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27406732

RESUMO

Chile is topographically and climatically diverse, with a wide array of diverse undisturbed ecosystems that include native plants that are highly adapted to local conditions. However, our understanding of the diversity, activity, and role of rhizobacteria associated with natural vegetation in undisturbed Chilean extreme ecosystems is very poor. In the present study, the combination of denaturing gradient gel electrophoresis and 454-pyrosequencing approaches was used to describe the rhizobacterial community structures of native plants grown in three representative Chilean extreme environments: Atacama Desert (ATA), Andes Mountains (AND), and Antarctic (ANT). Both molecular approaches revealed the presence of Proteobacteria, Bacteroidetes, and Actinobacteria as the dominant phyla in the rhizospheres of native plants. Lower numbers of operational taxonomic units (OTUs) were observed in rhizosphere soils from ATA compared with AND and ANT. Both approaches also showed differences in rhizobacterial community structures between extreme environments and between plant species. The differences among plant species grown in the same environment were attributed to the higher relative abundance of classes Gammaproteobacteria and Alphaproteobacteria. However, further studies are needed to determine which environmental factors regulate the structures of rhizobacterial communities, and how (or if) specific bacterial groups may contribute to the growth and survival of native plants in each Chilean extreme environments.


Assuntos
Bactérias/classificação , Ambientes Extremos , Raízes de Plantas/microbiologia , Plantas/microbiologia , Microbiologia do Solo , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Regiões Antárticas , Bactérias/genética , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Sequência de Bases , Biodiversidade , Chile , Classificação , Clima , DNA Bacteriano/isolamento & purificação , Eletroforese em Gel de Gradiente Desnaturante , Clima Desértico , Ecossistema , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Concentração de Íons de Hidrogênio , Filogenia , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Rizosfera , Solo/química , Especificidade da Espécie
8.
FEMS Microbiol Lett ; 363(11)2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27190285

RESUMO

Ice-binding proteins (IBPs), such as antifreeze proteins (AFPs) and ice-nucleating proteins (INPs), have been described in diverse cold-adapted organisms, and their potential applications in biotechnology have been recognized in various fields. Currently, both IBPs are being applied to biotechnological processes, primarily in medicine and the food industry. However, our knowledge regarding the diversity of bacterial IBPs is limited; few studies have purified and characterized AFPs and INPs from bacteria. Phenotypically verified IBPs have been described in members belonging to Gammaproteobacteria, Actinobacteria and Flavobacteriia classes, whereas putative IBPs have been found in Gammaproteobacteria, Alphaproteobacteria and Bacilli classes. Thus, the main goal of this minireview is to summarize the current information on bacterial IBPs and their application in biotechnology, emphasizing the potential application in less explored fields such as agriculture. Investigations have suggested the use of INP-producing bacteria antagonists and AFPs-producing bacteria (or their AFPs) as a very attractive strategy to prevent frost damages in crops. UniProt database analyses of reported IBPs (phenotypically verified) and putative IBPs also show the limited information available on bacterial IBPs and indicate that major studies are required.


Assuntos
Proteínas Anticongelantes , Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa , Proteínas de Bactérias , Biotecnologia/métodos , Gelo , Agricultura/métodos , Proteínas Anticongelantes/metabolismo , Bactérias/classificação , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Cristalização , Congelamento , Gammaproteobacteria/metabolismo , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...