Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
N Engl J Med ; 368(6): 543-50, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23363473

RESUMO

We describe a disease encompassing infantile-onset movement disorder (including severe parkinsonism and nonambulation), mood disturbance, autonomic instability, and developmental delay, and we describe evidence supporting its causation by a mutation in SLC18A2 (which encodes vesicular monoamine transporter 2 [VMAT2]). VMAT2 translocates dopamine and serotonin into synaptic vesicles and is essential for motor control, stable mood, and autonomic function. Treatment with levodopa was associated with worsening, whereas treatment with direct dopamine agonists was followed by immediate ambulation, near-complete correction of the movement disorder, and resumption of development.


Assuntos
Dopamina/metabolismo , Transtornos do Humor/genética , Transtornos dos Movimentos/genética , Mutação , Serotonina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/genética , Idade de Início , Sequência de Bases , Benzotiazóis/uso terapêutico , Cromossomos Humanos Par 10 , Dopamina/urina , Agonistas de Dopamina/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Distonia/genética , Feminino , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Transtornos dos Movimentos/tratamento farmacológico , Transtornos Parkinsonianos/genética , Linhagem , Pramipexol , Análise de Sequência de DNA , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Síndrome , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
2.
Acta Neuropathol ; 125(3): 439-57, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23315026

RESUMO

X-linked Myopathy with Excessive Autophagy (XMEA) is a childhood onset disease characterized by progressive vacuolation and atrophy of skeletal muscle. We show that XMEA is caused by hypomorphic alleles of the VMA21 gene, that VMA21 is the diverged human ortholog of the yeast Vma21p protein, and that like Vma21p, VMA21 is an essential assembly chaperone of the vacuolar ATPase (V-ATPase), the principal mammalian proton pump complex. Decreased VMA21 raises lysosomal pH which reduces lysosomal degradative ability and blocks autophagy. This reduces cellular free amino acids which leads to downregulation of the mTORC1 pathway, and consequent increased macroautophagy resulting in proliferation of large and ineffective autolysosomes that engulf sections of cytoplasm, merge, and vacuolate the cell. Our results uncover a novel mechanism of disease, namely macroautophagic overcompensation leading to cell vacuolation and tissue atrophy.


Assuntos
Adenosina Trifosfatases/metabolismo , Autofagia/genética , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/prevenção & controle , Doenças Musculares/genética , Doenças Musculares/prevenção & controle , ATPases Vacuolares Próton-Translocadoras/deficiência , ATPases Vacuolares Próton-Translocadoras/genética , Animais , Células Cultivadas , Humanos , Concentração de Íons de Hidrogênio , Leucina/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/genética , Lisossomos/metabolismo , Masculino , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Doenças Musculares/patologia , Mutação/genética , Interferência de RNA/fisiologia , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/metabolismo , Frações Subcelulares/patologia , Fatores de Tempo , Vacúolos/metabolismo
3.
Epilepsia ; 53(8): 1421-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22780858

RESUMO

PURPOSE: Dravet syndrome (DS) is an aggressive epileptic encephalopathy. Pharmacoresistant seizures of several types plague most patients with DS throughout their lives. Gait difficulties are a common, but inconsistent finding. The majority of cases are caused by mutations in the SCN1A gene, but little information is available about how particular mutations influence the adult phenotype. The purpose of this study is to correlate different types of SCN1A mutations and (1) seizure control, (2) occurrence of convulsive status epilepticus (cSE), and (3) the presence of crouch gait in adult patients. METHODS: In a cohort of 10 adult patients with DS caused by SCN1A mutations, we investigated seizure frequency, history of cSE, and gait. All patients were identified in the epilepsy clinic between 2009 and 2011. SCN1A mutations were divided into four different groups based on location or effect of the mutation. Retrospective chart review and recent physical examination were completed in all cases. KEY FINDINGS: All patients had a pathogenic mutation in the SCN1A gene. Four SCN1A mutations have not been described previously. Greater than 90% seizure reduction was observed (compared to childhood frequency) in six of seven patients with missense mutations in the pore-forming region (PFR) of the Na(v) 1.1 protein (group A) and nonsense mutations (group B). One patient with a splice-site mutation (group C) and another with a mutation outside the PFR (group D) became free of all types of seizures. cSE after the age of 19 years was observed in only one patient. Crouch gait, without spasticity, is identified as an element of the adult DS phenotype. However, only one half of our adult DS cohort demonstrated crouch gait. This feature was observed in five of seven patients from groups A and B. SIGNIFICANCE: This study shows that seizure control improves and cSE become less frequent in DS as patients age, independent of their SCN1A mutation type. Complete seizure freedom was seen in two patients (groups C and D). Finally, this study shows that in DS, crouch gait can be observed in up to 50% of adults with SCN1A mutation. Although no definite statistical correlations could be made due to the small number of patients, it is interesting to note that crouch gait was observed only in those patients with nonsense mutations or mutations in the PFR. Future studies with larger cohorts will be required to formally assess an association of gait abnormalities with particular SCN1A mutations.


Assuntos
Epilepsias Mioclônicas/genética , Marcha/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Canais de Sódio/genética , Adolescente , Adulto , Fatores Etários , Anticonvulsivantes/uso terapêutico , Códon sem Sentido/genética , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/fisiopatologia , Feminino , Transtornos Neurológicos da Marcha/genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Canal de Sódio Disparado por Voltagem NAV1.1 , Fenótipo , Convulsões/genética , Convulsões/prevenção & controle , Adulto Jovem
4.
PLoS Genet ; 7(7): e1002194, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21829378

RESUMO

One quadrillion synapses are laid in the first two years of postnatal construction of the human brain, which are then pruned until age 10 to 500 trillion synapses composing the final network. Genetic epilepsies are the most common neurological diseases with onset during pruning, affecting 0.5% of 2-10-year-old children, and these epilepsies are often characterized by spontaneous remission. We previously described a remitting epilepsy in the Lagotto romagnolo canine breed. Here, we identify the gene defect and affected neurochemical pathway. We reconstructed a large Lagotto pedigree of around 34 affected animals. Using genome-wide association in 11 discordant sib-pairs from this pedigree, we mapped the disease locus to a 1.7 Mb region of homozygosity in chromosome 3 where we identified a protein-truncating mutation in the Lgi2 gene, a homologue of the human epilepsy gene LGI1. We show that LGI2, like LGI1, is neuronally secreted and acts on metalloproteinase-lacking members of the ADAM family of neuronal receptors, which function in synapse remodeling, and that LGI2 truncation, like LGI1 truncations, prevents secretion and ADAM interaction. The resulting epilepsy onsets at around seven weeks (equivalent to human two years), and remits by four months (human eight years), versus onset after age eight in the majority of human patients with LGI1 mutations. Finally, we show that Lgi2 is expressed highly in the immediate post-natal period until halfway through pruning, unlike Lgi1, which is expressed in the latter part of pruning and beyond. LGI2 acts at least in part through the same ADAM receptors as LGI1, but earlier, ensuring electrical stability (absence of epilepsy) during pruning years, preceding this same function performed by LGI1 in later years. LGI2 should be considered a candidate gene for common remitting childhood epilepsies, and LGI2-to-LGI1 transition for mechanisms of childhood epilepsy remission.


Assuntos
Epilepsias Parciais/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas ADAM/metabolismo , Animais , Encéfalo/metabolismo , Células COS , Chlorocebus aethiops , Cães , Epilepsias Parciais/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Estudo de Associação Genômica Ampla , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica/fisiologia , Ratos
5.
Genomics ; 98(1): 26-39, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21447378

RESUMO

Here we report the use of a multi-genome DNA microarray to investigate the genome diversity of Bacillus cereus group members and elucidate the events associated with the emergence of Bacillus anthracis the causative agent of anthrax-a lethal zoonotic disease. We initially performed directed genome sequencing of seven diverse B. cereus strains to identify novel sequences encoded in those genomes. The novel genes identified, combined with those publicly available, allowed the design of a "species" DNA microarray. Comparative genomic hybridization analyses of 41 strains indicate that substantial heterogeneity exists with respect to the genes comprising functional role categories. While the acquisition of the plasmid-encoded pathogenicity island (pXO1) and capsule genes (pXO2) represents a crucial landmark dictating the emergence of B. anthracis, the evolution of this species and its close relatives was associated with an overall shift in the fraction of genes devoted to energy metabolism, cellular processes, transport, as well as virulence.


Assuntos
Bacillus anthracis/genética , Evolução Molecular , Genoma Bacteriano , Bacillus anthracis/patogenicidade , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Virulência
6.
Cell ; 137(2): 235-46, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19379691

RESUMO

X-linked myopathy with excessive autophagy (XMEA) is a childhood-onset disease characterized by progressive vacuolation and atrophy of skeletal muscle. We show that XMEA is caused by hypomorphic alleles of the VMA21 gene, that VMA21 is the diverged human ortholog of the yeast Vma21p protein, and that like Vma21p it is an essential assembly chaperone of the V-ATPase, the principal mammalian proton pump complex. Decreased VMA21 raises lysosomal pH, which reduces lysosomal degradative ability and blocks autophagy. This reduces cellular free amino acids, which upregulates the mTOR pathway and mTOR-dependent macroautophagy, resulting in proliferation of large and ineffective autolysosomes that engulf sections of cytoplasm, merge together, and vacuolate the cell. Our results uncover macroautophagic overcompensation leading to cell vacuolation and tissue atrophy as a mechanism of disease.


Assuntos
Genes Ligados ao Cromossomo X , Doenças Musculares/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Autofagia , Humanos , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética
7.
Nature ; 440(7084): 637-43, 2006 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-16554755

RESUMO

Identification of protein-protein interactions often provides insight into protein function, and many cellular processes are performed by stable protein complexes. We used tandem affinity purification to process 4,562 different tagged proteins of the yeast Saccharomyces cerevisiae. Each preparation was analysed by both matrix-assisted laser desorption/ionization-time of flight mass spectrometry and liquid chromatography tandem mass spectrometry to increase coverage and accuracy. Machine learning was used to integrate the mass spectrometry scores and assign probabilities to the protein-protein interactions. Among 4,087 different proteins identified with high confidence by mass spectrometry from 2,357 successful purifications, our core data set (median precision of 0.69) comprises 7,123 protein-protein interactions involving 2,708 proteins. A Markov clustering algorithm organized these interactions into 547 protein complexes averaging 4.9 subunits per complex, about half of them absent from the MIPS database, as well as 429 additional interactions between pairs of complexes. The data (all of which are available online) will help future studies on individual proteins as well as functional genomics and systems biology.


Assuntos
Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Evolução Biológica , Sequência Conservada , Espectrometria de Massas , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteoma/química , Proteômica , Proteínas de Saccharomyces cerevisiae/química
8.
Proc Natl Acad Sci U S A ; 101(22): 8449-54, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15155910

RESUMO

Bacillus anthracis is the etiologic agent of anthrax, an acute fatal disease among mammals. It was thought to differ from Bacillus cereus, an opportunistic pathogen and cause of food poisoning, by the presence of plasmids pXO1 and pXO2, which encode the lethal toxin complex and the poly-gamma-d-glutamic acid capsule, respectively. This work describes a non-B. anthracis isolate that possesses the anthrax toxin genes and is capable of causing a severe inhalation anthrax-like illness. Although initial phenotypic and 16S rRNA analysis identified this isolate as B. cereus, the rapid generation and analysis of a high-coverage draft genome sequence revealed the presence of a circular plasmid, named pBCXO1, with 99.6% similarity with the B. anthracis toxin-encoding plasmid, pXO1. Although homologues of the pXO2 encoded capsule genes were not found, a polysaccharide capsule cluster is encoded on a second, previously unidentified plasmid, pBC218. A/J mice challenged with B. cereus G9241 confirmed the virulence of this strain. These findings represent an example of how genomics could rapidly assist public health experts responding not only to clearly identified select agents but also to novel agents with similar pathogenic potentials. In this study, we combined a public health approach with genome analysis to provide insight into the correlation of phenotypic characteristics and their genetic basis.


Assuntos
Antraz , Antígenos de Bactérias , Bacillus cereus/genética , Bacillus cereus/patogenicidade , Toxinas Bacterianas/genética , Animais , Antraz/etiologia , Bacillus anthracis/classificação , Bacillus anthracis/citologia , Bacillus anthracis/genética , Bacillus cereus/classificação , Bacillus cereus/citologia , Genoma Bacteriano , Genômica , Humanos , Camundongos , Plasmídeos/genética
9.
Nature ; 423(6935): 81-6, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12721629

RESUMO

Bacillus anthracis is an endospore-forming bacterium that causes inhalational anthrax. Key virulence genes are found on plasmids (extra-chromosomal, circular, double-stranded DNA molecules) pXO1 (ref. 2) and pXO2 (ref. 3). To identify additional genes that might contribute to virulence, we analysed the complete sequence of the chromosome of B. anthracis Ames (about 5.23 megabases). We found several chromosomally encoded proteins that may contribute to pathogenicity--including haemolysins, phospholipases and iron acquisition functions--and identified numerous surface proteins that might be important targets for vaccines and drugs. Almost all these putative chromosomal virulence and surface proteins have homologues in Bacillus cereus, highlighting the similarity of B. anthracis to near-neighbours that are not associated with anthrax. By performing a comparative genome hybridization of 19 B. cereus and Bacillus thuringiensis strains against a B. anthracis DNA microarray, we confirmed the general similarity of chromosomal genes among this group of close relatives. However, we found that the gene sequences of pXO1 and pXO2 were more variable between strains, suggesting plasmid mobility in the group. The complete sequence of B. anthracis is a step towards a better understanding of anthrax pathogenesis.


Assuntos
Bacillus anthracis/classificação , Bacillus anthracis/genética , Genes Bacterianos/genética , Genoma Bacteriano , Bacillus anthracis/patogenicidade , Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , RNA Bacteriano/análise , RNA Bacteriano/genética , Análise de Sequência de DNA , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...