Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293236

RESUMO

The local field potential (LFP), the low-frequency part of the extracellular potential, reflects transmembrane currents in the vicinity of the recording electrode. Thought mainly to stem from currents caused by synaptic input, it provides information about neural activity complementary to that of spikes, the output of neurons. However, the many neural sources contributing to the LFP, and likewise the derived current source density (CSD), can often make it challenging to interpret. Efforts to improve its interpretability have included the application of statistical decomposition tools like principal component analysis (PCA) and independent component analysis (ICA) to disentangle the contributions from different neural sources. However, their underlying assumptions of, respectively, orthogonality and statistical independence are not always valid for the various processes or pathways generating LFP. Here, we expand upon and validate a decomposition algorithm named Laminar Population Analysis (LPA), which is based on physiological rather than statistical assumptions. LPA utilizes the multiunit activity (MUA) and LFP jointly to uncover the contributions of different populations to the LFP. To perform the validation of LPA, we used data simulated with the large-scale, biophysically detailed model of mouse V1 developed by the Allen Institute. We find that LPA can identify laminar positions within V1 and the temporal profiles of laminar population firing rates from the MUA. We also find that LPA can estimate the salient current sinks and sources generated by feedforward input from the lateral geniculate nucleus (LGN), recurrent activity in V1, and feedback input from the lateromedial (LM) area of visual cortex. LPA identifies and distinguishes these contributions with a greater accuracy than the alternative statistical decomposition methods, PCA and ICA. Lastly, we also demonstrate the application of LPA on experimentally recorded MUA and LFP from 24 animals in the publicly available Visual Coding dataset. Our results suggest that LPA can be used both as a method to estimate positions of laminar populations and to uncover salient features in LFP/CSD contributions from different populations.

2.
Elife ; 122023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37486105

RESUMO

Local field potential (LFP) recordings reflect the dynamics of the current source density (CSD) in brain tissue. The synaptic, cellular, and circuit contributions to current sinks and sources are ill-understood. We investigated these in mouse primary visual cortex using public Neuropixels recordings and a detailed circuit model based on simulating the Hodgkin-Huxley dynamics of >50,000 neurons belonging to 17 cell types. The model simultaneously captured spiking and CSD responses and demonstrated a two-way dissociation: firing rates are altered with minor effects on the CSD pattern by adjusting synaptic weights, and CSD is altered with minor effects on firing rates by adjusting synaptic placement on the dendrites. We describe how thalamocortical inputs and recurrent connections sculpt specific sinks and sources early in the visual response, whereas cortical feedback crucially alters them in later stages. These results establish quantitative links between macroscopic brain measurements (LFP/CSD) and microscopic biophysics-based understanding of neuron dynamics and show that CSD analysis provides powerful constraints for modeling beyond those from considering spikes.


Assuntos
Neurônios , Córtex Visual Primário , Animais , Camundongos , Neurônios/fisiologia , Encéfalo , Modelos Neurológicos
3.
PLoS Comput Biol ; 16(11): e1008386, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253147

RESUMO

Experimental studies in neuroscience are producing data at a rapidly increasing rate, providing exciting opportunities and formidable challenges to existing theoretical and modeling approaches. To turn massive datasets into predictive quantitative frameworks, the field needs software solutions for systematic integration of data into realistic, multiscale models. Here we describe the Brain Modeling ToolKit (BMTK), a software suite for building models and performing simulations at multiple levels of resolution, from biophysically detailed multi-compartmental, to point-neuron, to population-statistical approaches. Leveraging the SONATA file format and existing software such as NEURON, NEST, and others, BMTK offers a consistent user experience across multiple levels of resolution. It permits highly sophisticated simulations to be set up with little coding required, thus lowering entry barriers to new users. We illustrate successful applications of BMTK to large-scale simulations of a cortical area. BMTK is an open-source package provided as a resource supporting modeling-based discovery in the community.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Biologia Computacional , Software , Potenciais de Ação , Fenômenos Biofísicos , Humanos , Rede Nervosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...