Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Sci Rep ; 11(1): 13697, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34211063

RESUMO

Microbial keratitis occurs from the infection of the cornea by fungi and or bacteria. It remains one of the most common global causes of irreversible blindness accounting for 3.5% (36 million) of blind people as of 2015. This paper looks at the use of a bacteria binding polymer designed to bind Staphylococcus aureus and remove it from the corneal surface. Mechanical unbinding measurements were used to probe the interactions of a thermo-active bacteria-binding polymer, highly-branched poly(N-isopropyl acrylamide), functionalised with modified vancomycin end groups (HB-PNIPAM-Van) to bacteria placed on rabbit corneal surfaces studied ex-vivo. This was conducted during sequential temperature phase transitions of HB-PNIPAM-Van-S. aureus below, above and below the lower critical solution temperature (LCST) in 3 stages, in-vitro, using a novel micro-bead force spectroscopy (MBFS) approach via atomic force microscopy (AFM). The effect of temperature on the functionality of HB-PNIPAM-Van-S. aureus showed that the polymer-bacteria complex reduced the work done in removing bacterial aggregates at T > LCST (p < 0.05), exhibiting reversibility at T < LCST (p < 0.05). At T < LCST, the breaking force, number of unbinding events, percentage fitted segments in the short and long range, and the percentage of unbinding events occurring in the long range (> 2.5 µm) increased (p < 0.05). Furthermore, the LCST phase transition temperature showed 100 × more unbinding events in the long-range z-length (> 2.5 µm) compared to S. aureus aggregates only. Here, we present the first study using AFM to assess the reversible mechanical impact of a thermo-active polymer-binding bacteria on a natural corneal surface.


Assuntos
Resinas Acrílicas/química , Córnea/microbiologia , Microscopia de Força Atômica/métodos , Staphylococcus aureus/isolamento & purificação , Vancomicina/análogos & derivados , Animais , Transição de Fase , Coelhos , Temperatura
2.
Br J Biomed Sci ; 74(4): 157-162, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28657490

RESUMO

Uncertainty of measurement has become a paramount factor to consider in pathology. In the UK, consideration of uncertainty of measurement is mandatory for medical laboratories who apply to be accredited against ISO15189:2012 via the United Kingdom Accreditation Service. This guideline intends to help those working within diagnostic andrology to better understand the concept of uncertainty, and how it can be applied to semen analysis and post-vasectomy semen analysis. The various areas where uncertainty may exist are identified, and guidance is provided to minimise this uncertainty. This guidance is produced by the Association of Biomedical Andrologists alongside experts in the field of andrology, in order to aid laboratory scientists in understanding and undertaking important tasks that will improve quality of their service.


Assuntos
Andrologia , Guias de Prática Clínica como Assunto , Incerteza , Humanos , Masculino , Controle de Qualidade , Análise do Sêmen , Motilidade dos Espermatozoides , Reino Unido
3.
Front Plant Sci ; 7: 1771, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27965684

RESUMO

Seven blackleg resistance (R) genes (Rlm1, Rlm2, Rlm3, Rlm4, LepR1, LepR2 & LepR3) were each introgressed into a common susceptible B. napus doubled-haploid (DH) line through reciprocal back-crossing, producing single-R gene introgression lines (ILs) for use in the pathological and molecular study of Brassica-Leptosphaeria interactions. The genomic positions of the R genes were defined through molecular mapping and analysis with transgenic L. maculans isolates was used to confirm the identity of the introgressed genes where possible. Using L. maculans isolates of contrasting avirulence gene (Avr) profiles, we preformed extensive differential pathology for phenotypic comparison of the ILs to other B. napus varieties, demonstrating the ILs can provide for the accurate assessment of Avr-R gene interactions by avoiding non-Avr dependant alterations to resistance responses which can occur in some commonly used B. napus varieties. Whole-genome SNP-based assessment allowed us to define the donor parent introgressions in each IL and provide a strong basis for comparative molecular dissection of the pathosystem.

4.
Ultramicroscopy ; 171: 126-138, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27665428

RESUMO

Recently developed detectors can deliver high resolution and high contrast images of nanostructured carbon based materials in low voltage scanning electron microscopes (LVSEM) with beam deceleration. Monte Carlo Simulations are also used to predict under which exact imaging conditions purely compositional contrast can be obtained and optimised. This allows the prediction of the electron signal intensity in angle selective conditions for back-scattered electron (BSE) imaging in LVSEM and compares it to experimental signals. Angle selective detection with a concentric back scattered (CBS) detector is considered in the model in the absence and presence of a deceleration field, respectively. The validity of the model prediction for both cases was tested experimentally for amorphous C and Cu and applied to complex nanostructured carbon based materials, namely a Poly(N-isopropylacrylamide)/Poly(ethylene glycol) Diacrylate (PNIPAM/PEGDA) semi-interpenetration network (IPN) and a Poly(3-hexylthiophene-2,5-diyl) (P3HT) film, to map nano-scale composition and crystallinity distribution by avoiding experimental imaging conditions that lead to a mixed topographical and compositional contrast.

5.
BMC Plant Biol ; 16(1): 183, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27553246

RESUMO

BACKGROUND: Resistance to the blackleg disease of Brassica napus (canola/oilseed rape), caused by the hemibiotrophic fungal pathogen Leptosphaeria maculans, is determined by both race-specific resistance (R) genes and quantitative resistance loci (QTL), or adult-plant resistance (APR). While the introgression of R genes into breeding material is relatively simple, QTL are often detected sporadically, making them harder to capture in breeding programs. For the effective deployment of APR in crop varieties, resistance QTL need to have a reliable influence on phenotype in multiple environments and be well defined genetically to enable marker-assisted selection (MAS). RESULTS: Doubled-haploid populations produced from the susceptible B. napus variety Topas and APR varieties AG-Castle and AV-Sapphire were analysed for resistance to blackleg in two locations over 3 and 4 years, respectively. Three stable QTL were detected in each population, with two loci appearing to be common to both APR varieties. Physical delineation of three QTL regions was sufficient to identify candidate defense-related genes, including a cluster of cysteine-rich receptor-like kinases contained within a 49 gene QTL interval on chromosome A01. Individual L. maculans isolates were used to define the physical intervals for the race-specific R genes Rlm3 and Rlm4 and to identify QTL common to both field studies and the cotyledon resistance response. CONCLUSION: Through multi-environment QTL analysis we have identified and delineated four significant and stable QTL suitable for MAS of quantitative blackleg resistance in B. napus, and identified candidate genes which potentially play a role in quantitative defense responses to L. maculans.


Assuntos
Ascomicetos/fisiologia , Brassica napus/genética , Doenças das Plantas/genética , Proteínas Quinases/genética , Locos de Características Quantitativas , Brassica napus/imunologia , Brassica napus/microbiologia , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas Quinases/metabolismo
6.
Can J Microbiol ; 62(10): 836-850, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27503454

RESUMO

Mitogen-activated protein kinases (MAPKs) play a central role in transferring signals and regulating gene expression in response to extracellular stimuli. An ortholog of the Saccharomyces cerevisiae cell wall integrity MAPK was identified in the phytopathogenic fungus Sclerotinia sclerotiorum. Disruption of the S. sclerotiorum Smk3 gene severely reduced virulence on intact host plant leaves but not on leaves stripped of cuticle wax. This was attributed to alterations in hyphal apical dominance leading to the inability to aggregate and form infection cushions. The mutation also caused loss of the ability to produce sclerotia, increased aerial hyphae formation, and altered hyphal hydrophobicity and cell wall integrity. Mutants had slower radial expansion rates on solid media but more tolerance to elevated temperatures. Loss of the SMK3 cell wall integrity MAPK appears to have impaired the ability of S. sclerotiorum to sense its surrounding environment, leading to misregulation of a variety of functions. Many of the phenotypes were similar to those observed in S. sclerotiorum adenylate cyclase and SMK1 MAPK mutants, suggesting that these signaling pathways co-regulate aspects of fungal growth, physiology, and pathogenicity.


Assuntos
Ascomicetos/enzimologia , Proteínas Fúngicas/fisiologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Doenças das Plantas/microbiologia , Adenilil Ciclases/genética , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/patogenicidade , Brassica napus/microbiologia , Parede Celular/metabolismo , Sequência Conservada , Expressão Gênica , Hifas/enzimologia , Hifas/crescimento & desenvolvimento , Hifas/patogenicidade , Proteínas de Membrana , Micélio/enzimologia , Micélio/crescimento & desenvolvimento , Micélio/patogenicidade , Fenótipo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Virulência/genética
7.
BMC Plant Biol ; 14: 387, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25551287

RESUMO

BACKGROUND: The protection of canola (Brassica napus) crops against blackleg disease, caused by the fungal pathogen Leptosphaeria maculans, is largely mediated by race-specific resistance genes (R-genes). While many R-genes effective against blackleg disease have been identified in Brassica species, information of the precise genomic locations of the genes is limited. RESULTS: In this study, the Rlm2 gene for resistance to blackleg, located on chromosome A10 of the B. napus cultivar 'Glacier', was targeted for fine mapping. Molecular markers tightly linked to the gene were developed for use in mapping the resistance locus and defining the physical interval in B. napus. Rlm2 was localised to a 5.8 cM interval corresponding to approximately 873 kb of the B. napus chromosome A10. CONCLUSION: The recently-cloned B. napus R-gene, LepR3, occupies the same region of A10 as Rlm2 and analysis of the putative B. napus and B. rapa genes in the homologous region identified several additional candidate defense-related genes that may control Rlm2 function.


Assuntos
Brassica napus/genética , Brassica napus/microbiologia , Cromossomos de Plantas/genética , Resistência à Doença/genética , Proteínas de Plantas/genética , Ascomicetos/fisiologia , Brassica napus/metabolismo , Cruzamento , Mapeamento Cromossômico , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Marcadores Genéticos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo
8.
Can J Microbiol ; 59(2): 79-86, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23461514

RESUMO

Sclerotinia sclerotiorum releases a battery of polygalacturonases (PGs) during infection, which the host plant may cope with through production of polygalacturonase inhibitor proteins (PGIPs). To study the interaction between S. sclerotiorum PGs and Brassica napus PGIPs, 5 S. sclerotiorum PGs and 4 B. napus PGIPs were expressed in Pichia pastoris. SsPG3, SsPG6, and BnPGIP1 were successfully produced in the yeast system, and BnPGIP1 inhibited SsPG6 enzymatic activity in vitro. SsPG3 and SsPG6 both induced light-dependent necrosis when infiltrated into leaves, which was reduced in an Arabidopsis thaliana line expressing BnPGIP2 and to a lesser extent in a line expressing BnPGIP1. The line expressing BnPGIP2 also exhibited a delay in the onset of symptoms upon S. sclerotiorum inoculation, but no long-term effect on S. sclerotiorum disease progression was observed. The P. pastoris system was found to be suitable for expressing high levels of some S. sclerotiorum PGs, but PGIP interaction studies were best performed in planta. Arabidopsis thaliana forms necrotic lesions upon infiltration of PGs, is susceptible to S. sclerotiorum, and is easily transformed, and thus, is well-suited for the qualitative study of PG-PGIP interactions.


Assuntos
Ascomicetos/enzimologia , Brassica napus/genética , Brassica napus/microbiologia , Inibidores Enzimáticos/metabolismo , Proteínas de Plantas/genética , Arabidopsis/genética , Arabidopsis/microbiologia , Brassica napus/metabolismo , Expressão Gênica , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Poligalacturonase/antagonistas & inibidores , Poligalacturonase/metabolismo
9.
Theor Appl Genet ; 126(2): 307-15, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22733446

RESUMO

Blackleg, caused by Leptosphaeria maculans, is one of the most economically important diseases of Brassica napus worldwide. Two blackleg-resistant lines, 16S and 61446, were developed through interspecific hybridization between B. napus and B. rapa subsp. sylvestris and backcrossing to B. napus. Classical genetic analysis demonstrated that a single recessive gene in both lines conferred resistance to L. maculans and that the resistance alleles were allelic. Using BC(1) progeny derived from each resistant plant, this locus was mapped to B. napus linkage group N6 and was flanked by microsatellite markers sN2189b and sORH72a in an interval of about 10 cM, in a region equivalent to about 6 Mb of B. rapa DNA sequence. This new resistance gene locus was designated as LepR4. The two lines were evaluated for resistance to a wide range of L. maculans isolates using cotyledon inoculation tests under controlled environment conditions, and for stem canker resistance in blackleg field nurseries. Results indicated that line 16S, carrying LepR4a, was highly resistant to all isolates tested on cotyledons and had a high level of stem canker resistance under field conditions. Line 61446, carrying LepR4b, was only resistant to some of the isolates tested on cotyledons and was weakly resistant to stem canker under field conditions.


Assuntos
Ascomicetos/fisiologia , Brassica napus/genética , Brassica napus/microbiologia , Resistência à Doença/genética , Genes de Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Ascomicetos/patogenicidade , Brassica napus/imunologia , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cotilédone/genética , Cotilédone/imunologia , Cotilédone/microbiologia , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Imunidade Inata , Repetições de Microssatélites , Doenças das Plantas/genética , Doenças das Plantas/imunologia
10.
New Phytol ; 197(2): 595-605, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23206118

RESUMO

LepR3, found in the Brassica napus cv 'Surpass 400', provides race-specific resistance to the fungal pathogen Leptosphaeria maculans, which was overcome after great devastation in Australia in 2004. We investigated the LepR3 locus to identify the genetic basis of this resistance interaction. We employed a map-based cloning strategy, exploiting collinearity with the Arabidopsis thaliana and Brassica rapa genomes to enrich the map and locate a candidate gene. We also investigated the interaction of LepR3 with the L. maculans avirulence gene AvrLm1 using transgenics. LepR3 was found to encode a receptor-like protein (RLP). We also demonstrated that avirulence towards LepR3 is conferred by AvrLm1, which is responsible for both the Rlm1 and LepR3-dependent resistance responses in B. napus. LepR3 is the first functional B. napus disease resistance gene to be cloned. AvrLm1's interaction with two independent resistance loci, Rlm1 and LepR3, highlights the need to consider redundant phenotypes in 'gene-for-gene' interactions and offers an explanation as to why LepR3 was overcome so rapidly in parts of Australia.


Assuntos
Ascomicetos/fisiologia , Brassica napus/genética , Brassica napus/microbiologia , Resistência à Doença/genética , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/genética , Doenças das Plantas/microbiologia , Ascomicetos/patogenicidade , Brassica napus/imunologia , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudos de Associação Genética , Loci Gênicos/genética , Marcadores Genéticos , Proteínas de Membrana/metabolismo , Fenótipo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sintenia/genética , Transformação Genética , Virulência
11.
Can J Microbiol ; 58(5): 605-16, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22524557

RESUMO

Sclerotinia sclerotiorum releases hydrolytic enzymes that sequentially degrade the plant cuticle, middle lamellae, and primary and secondary cell walls. The cuticle was found to be a barrier to S. sclerotiorum infection, as leaves stripped of epicuticular wax were more rapidly colonized. Consequently, the factors affecting the regulation of genes encoding polygalacturonase 1 (SsPG1) and a newly identified cutinase (SsCUTA) were examined. In vitro, SsCutA transcripts were detected within 1 h postinoculation of leaves, and expression was primarily governed by contact of mycelia with solid surfaces. Expression of SsPg1 was moderately induced by contact with solid surfaces including the leaf, and expression was restricted to the expanding margin of the lesion as the infection progressed. SsPg1 expression was induced by carbohydrate starvation but repressed by galacturonic acid. Glucose supported a basal level of SsPg1 expression but accentuated expression when provided to mycelia used to inoculate leaves. These observations were contrary to earlier reports indicating that glucose repressed SsPg1 expression while galacturonic acid induced expression. Pharmacological studies showed that disruption of calcium signalling affected SsCutA and SsPg1 expression and decreased S. sclerotiorum virulence, whereas elevated cAMP levels reduced virulence without affecting gene expression. The mechanisms involved in coordinating the expression of S. sclerotiorum hydrolytic enzymes throughout the various stages of the infection are discussed.


Assuntos
Ascomicetos/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Doenças das Plantas/microbiologia , Poligalacturonase/metabolismo , Sequência de Aminoácidos , Ascomicetos/genética , Ascomicetos/patogenicidade , Sinalização do Cálcio , Hidrolases de Éster Carboxílico/genética , AMP Cíclico/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Glucose/farmacologia , Ácidos Hexurônicos/farmacologia , Dados de Sequência Molecular , Folhas de Planta/microbiologia , Poligalacturonase/genética
12.
Theor Appl Genet ; 124(3): 505-13, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22038486

RESUMO

AvrLepR1 of the fungal pathogen Leptosphaeria maculans is the avirulence gene that corresponds to Brassica LepR1, a plant gene controlling dominant, race-specific resistance to this pathogen. An in vitro cross between the virulent L. maculans isolate, 87-41, and the avirulent isolate, 99-56, was performed in order to map the AvrLepR1 gene. The disease reactions of the 94 of the resulting F(1) progenies were tested on the canola line ddm-12-6s-1, which carries LepR1. There were 44 avirulent progenies and 50 virulent progenies suggesting a 1:1 segregation ratio and that the avirulence of 99-56 on ddm-12-6s-1 is controlled by a single gene. Tetrad analysis also indicated a 1:1 segregation ratio. The AvrLepR1 gene was positioned on a genetic map of L. maculans relative to 259 sequence-related amplified polymorphism (SRAP) markers, two cloned avirulence genes (AvrLm1 and AvrLm4-7) and the mating type locus (MAT1). The genetic map consisted of 36 linkage groups, ranging in size from 13.1 to 163.7 cM, and spanned a total of 2,076.4 cM. The AvrLepR1 locus was mapped to linkage group 4, in the 13.1 cM interval flanked by the SRAP markers SBG49-110 and FT161-223. The AvrLm4-7 locus was also positioned on linkage group 4, close to but distinct from the AvrLepR1 locus, in the 5.4 cM interval flanked by FT161-223 and P1314-300. This work will make possible the further characterization and map-based cloning of AvrLepR1. A combination of genetic mapping and pathogenicity tests demonstrated that AvrLepR1 is different from each of the L. maculans avirulence genes that have been characterized previously.


Assuntos
Ascomicetos/genética , Brassica napus/genética , Resistência à Doença/genética , Genes Fúngicos/genética , Genes de Plantas/genética , Doenças das Plantas/microbiologia , Ascomicetos/patogenicidade , Brassica napus/microbiologia , Mapeamento Cromossômico , Cruzamentos Genéticos , Primers do DNA/genética , Marcadores Genéticos/genética , Virulência/genética
13.
Mol Plant Pathol ; 11(2): 283-91, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20447277

RESUMO

White blister rust caused by Albugo candida (Pers.) Kuntze is a common and often devastating disease of oilseed and vegetable brassica crops worldwide. Physiological races of the parasite have been described, including races 2, 7 and 9 from Brassica juncea, B. rapa and B. oleracea, respectively, and race 4 from Capsella bursa-pastoris (the type host). A gene named WRR4 has been characterized recently from polygenic resistance in the wild brassica relative Arabidopsis thaliana (accession Columbia) that confers broad-spectrum white rust resistance (WRR) to all four of the above Al. candida races. This gene encodes a TIR-NB-LRR (Toll-like/interleukin-1 receptor-nucleotide binding-leucine-rich repeat) protein which, as with other known functional members in this subclass of intracellular receptor-like proteins, requires the expression of the lipase-like defence regulator, enhanced disease susceptibility 1 (EDS1). Thus, we used RNA interference-mediated suppression of EDS1 in a white rust-resistant breeding line of B. napus (transformed with a construct designed from the A. thaliana EDS1 gene) to determine whether defence signalling via EDS1 is functionally intact in this oilseed brassica. The eds1-suppressed lines were fully susceptible following inoculation with either race 2 or 7 isolates of Al. candida. We then transformed white rust-susceptible cultivars of B. juncea (susceptible to race 2) and B. napus (susceptible to race 7) with the WRR4 gene from A. thaliana. The WRR4-transformed lines were resistant to the corresponding Al. candida race for each host species. The combined data indicate that WRR4 could potentially provide a novel source of white rust resistance in oilseed and vegetable brassica crops.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Brassica/genética , Produtos Agrícolas/genética , Imunidade Inata/genética , Doenças das Plantas/imunologia , Proteínas/genética , Proteínas de Arabidopsis/química , Brassica/microbiologia , Segregação de Cromossomos/genética , Genes de Plantas/genética , Imunidade Inata/imunologia , Proteínas de Repetições Ricas em Leucina , Oomicetos/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estrutura Terciária de Proteína , Interferência de RNA , Sementes/genética , Sementes/microbiologia , Virulência
14.
Mol Plant Pathol ; 11(1): 43-53, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20078775

RESUMO

Successful host colonization by necrotrophic plant pathogens requires the induction of plant cell death to provide the nutrients needed for infection establishment and progression. We have cloned two genes encoding necrosis and ethylene-inducing peptides from Sclerotinia sclerotiorum, which we named SsNep1 and SsNep2. The peptides encoded by these genes induce necrosis when expressed transiently in tobacco leaves. SsNep1 is expressed at a very low level relative to SsNep2 during infection. The expression of SsNep2 was induced by contact with solid surfaces and occurred in both the necrotic zone and at the leading margin of the infection. SsNep2 expression was dependent on calcium and cyclic adenosine monophosphate signalling, as compounds affecting these pathways reduced or abolished SsNep2 expression coincident with a partial or total loss of virulence.


Assuntos
Ascomicetos/patogenicidade , Etilenos/metabolismo , Biossíntese Peptídica , Sequência de Aminoácidos , Sinalização do Cálcio , AMP Cíclico/metabolismo , Dados de Sequência Molecular , Necrose , Peptídeos/química , Homologia de Sequência de Aminoácidos
15.
Regen Med ; 5(1): 55-64, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20017694

RESUMO

AIMS: Superficial burns and scalds are usually managed conservatively with traditional dressings. Failure to heal within 3 weeks leads to their management by skin grafting. Our aim was to develop a biomaterial to actively promote keratinocyte migration in superficial burns by modulating local cation concentrations to accelerate keratinocyte migration and deter wounds from contracting, thus potentially reducing the number of such wounds requiring grafting. MATERIALS & METHODS: We investigated polymeric hydrogels for their Ca(2+) chelating properties and enhancement of keratinocyte migration in human tissue-engineered skin models. RESULTS: Dimethylaminoethyl methacrylate:methacrylic acid hydrogel coupled with elevated [Mg(2+)] reduced media [Ca(2+)], potentiating keratinocyte migration in tissue-engineered skin models, it also significantly reduced wound model contraction. CONCLUSION: Dimethylaminoethyl methacrylate:methacrylic acid hydrogels could promote wound healing and reduce wound contraction, a significant complication in burn wound healing.


Assuntos
Queimaduras/tratamento farmacológico , Quelantes/uso terapêutico , Hidrogel de Polietilenoglicol-Dimetacrilato/uso terapêutico , Metacrilatos/uso terapêutico , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/uso terapêutico , Cálcio , Movimento Celular/efeitos dos fármacos , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/síntese química , Queratinócitos/citologia , Cicatrização/efeitos dos fármacos
16.
Plant Physiol Biochem ; 47(7): 653-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19345111

RESUMO

Gene redundancy due to polyploidization provides a selective advantage for plant adaptation. We examined the expression patterns of two peroxidase genes (BnPOX1 and BnPOX2) in the natural allotetraploid Brassica napus and the model diploid progenitors Brassica rapa (Br) and Brassica oleracea (Bo) in response to the fungal pathogen Sclerotinia sclerotiorum. We demonstrated that the Bo homeolog of BnPOX1 was up-regulated after infection, while both BnPOX2 homeologs were down-regulated. A bias toward reciprocal expression of the homeologs of BnPOX1 in different organs in the natural allotetraploid of B. napus was also observed. These results suggest that subfunctionalization of the duplicated BnPOX genes after B. napus polyploidization as well as subneofunctionalization of the homeologs in response to this specific biotic stress has occurred. Retention of expression patterns in the diploid progenitors and the natural allotetraploid in some organs indicates that the function of peroxidase genes has been conserved during evolution.


Assuntos
Brassica napus/genética , Regulação da Expressão Gênica de Plantas , Expressão Gênica , Genes Duplicados , Genes de Plantas , Peroxidase/genética , Doenças das Plantas/microbiologia , Ascomicetos , Brassica napus/metabolismo , Família Multigênica , Peroxidase/metabolismo , Doenças das Plantas/genética , Estruturas Vegetais , Poliploidia
17.
Mol Plant Microbe Interact ; 21(6): 757-68, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18624640

RESUMO

White blister rust in the Brassicaceae is emerging as a superb model for exploring how plant biodiversity has channeled speciation of biotrophic parasites. The causal agents of white rust across a wide breadth of cruciferous hosts currently are named as variants of a single oomycete species, Albugo candida. The most notable examples include a major group of physiological races that each are economically destructive in a different vegetable or oilseed crop of Brassica juncea (A. candida race 2), B. rapa (race 7), or B. oleracea (race 9); or parasitic on wild crucifers such as Capsella bursa-pastoris (race 4). Arabidopsis thaliana is innately immune to these races of A. candida under natural conditions; however, it commonly hosts its own molecularly distinct subspecies of A. candida (A. candida subsp. arabidopsis). In the laboratory, we have identified several accessions of Arabidopsis thaliana (e.g.,. Ws-3) that can permit varying degrees of rust development following inoculation with A. candida races 2, 4, and 7, whereas race 9 is universally incompatible in Arabidopsis thaliana and nonrusting resistance is the most prevalent outcome of interactions with the other races. Subtle variation in resistance phenotypes is evident, observed initially with an isolate of A. candida race 4, indicating additional genetic variation. Therefore, we used the race 4 isolate for map-based cloning of the first of many expected white rust resistance (WRR) genes. This gene was designated WRR4 and encodes a cytoplasmic toll-interleukin receptor-like nucleotide-binding leucine-rich repeat receptor-like protein that confers a dominant, broad-spectrum white rust resistance in the Arabidopsis thaliana accession Columbia to representative isolates of A. candida races 2, 4, 7, and 9, as verified by transgenic expression of the Columbia allele in Ws-3. The WRR4 protein requires functional expression of the lipase-like protein EDS1 but not the paralogous protein PAD4, and confers full immunity that masks an underlying nonhypersensitive incompatibility in Columbia to A. candida race 4. This residual incompatibility is independent of functional EDS1.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Oomicetos/crescimento & desenvolvimento , Doenças das Plantas/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Imunidade Inata/genética , Imunidade Inata/imunologia , Modelos Genéticos , Mutação , Oomicetos/classificação , Oomicetos/isolamento & purificação , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie
18.
Planta ; 228(2): 241-53, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18431596

RESUMO

Most plants encode a limited set of polygalacturonase inhibitor (PGIP) genes that may be involved in aspects of plant development, but more importantly in the inactivation of polygalacturonases (PG) secreted by pathogens. Previously, we characterized two Brassica napus PGIP genes, BnPgip1 and BnPgip2, which were differentially expressed in response to pathogen infection and wounding. Here we report that the B. napus genome encodes a set of at least 16 PGIP genes that are similar to BnPgip1 or BnPgip2. This is the largest Pgip gene family reported to date. Comparison of the BnPGIPs revealed several sites within the xxLxLxx region of leucine rich repeats that form beta-sheets along the interacting face of the PGIP that are hypervariable and represent good candidates for generating PGIP diversity. Characterization of the regulatory regions and RT-PCR studies with gene-specific primers revealed that individual genes were differentially responsive to pathogen infection, mechanical wounding and signaling molecules. Many of the BnPgip genes responded to infection by the necrotic pathogen, Sclerotinia sclerotiorum; however, these genes were also induced either by jasmonic acid, wounding and salicylic acid or some combination thereof. The large number of PGIPs and the differential manner in which they are regulated likely ensures that B. napus can respond to attack from a broad spectrum of pathogens and pests.


Assuntos
Ascomicetos/fisiologia , Brassica napus/fisiologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Sequência de Aminoácidos , Brassica napus/microbiologia , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Família Multigênica , Oxilipinas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo
19.
Genome ; 51(1): 64-72, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18356940

RESUMO

The spectrum of resistance to isolates of Leptosphaeria maculans and the map location of a new blackleg resistance gene found in the canola cultivar Brassica napus 'Surpass 400' are described. Two blackleg resistance genes, LepR1 and LepR2, from B. rapa subsp. sylvestris and introgressed in B. napus were identified previously. 'Surpass 400' also has blackleg resistance introgressed from B. rapa subsp. sylvestris. Using 31 diverse isolates of L. maculans, the disease reaction of 'Surpass 400' was compared with those of the resistant breeding lines AD9 (which contains LepR1), AD49 (which contains LepR2), and MC1-8 (which contains both LepR1 and LepR2). The disease reaction on 'Surpass 400' was different from those observed on AD9 and MC1-8, indicating that 'Surpass 400' carries neither LepR1 nor both LepR1 and LepR2 in combination. Disease reactions of 'Surpass 400' to most of the isolates tested were indistinguishable from those of AD49, which suggested 'Surpass 400' might contain LepR2 or a similar resistance gene. Classical genetic analysis of F1 and BC1 plants showed that a dominant allele conferred resistance to isolates of L. maculans in 'Surpass 400'. The resistance gene, which mapped to B. napus linkage group N10 in an interval of 2.9 cM flanked by microsatellite markers sR12281a and sN2428Rb and 11.7 cM below LepR2, was designated LepR3. A 9 cM region of the B. napus genome containing LepR3 was found to be syntenic with a segment of Arabidopsis chromosome 5.


Assuntos
Brassica napus/genética , Genes de Plantas , Arabidopsis/genética , Ascomicetos/isolamento & purificação , Mapeamento Cromossômico , Cruzamentos Genéticos , Genômica , Imunidade Inata , Repetições de Microssatélites , Doenças das Plantas/microbiologia , Sintenia
20.
Phytochemistry ; 69(4): 894-910, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18039546

RESUMO

The metabolites produced in leaves of the oilseeds canola and rapeseed (Brassica rapa L.) inoculated with either different races of the biotroph Albugo candida or sprayed with CuCl(2) were determined. This investigation established consistent phytoalexin (spirobrassinin, cyclobrassinin, and rutalexin) and phytoanticipin (indolyl-3-acetonitrile, arvelexin, caulilexin C, and 4-methoxyglucobrassicin) production in canola and rapeseed in response to both biotic and abiotic elicitation. In addition, a wide number of polar metabolites were isolated from infected leaves, including six new phenylpropanoids and two new flavonoids. The extractable chemical components of zoosporangia of A. candida and the anti-oomycete activity of phytoalexins were determined as well. Overall, the results suggest that during the initial stage of the interaction, leaves of B. rapa have a similar response to virulent and avirulent races of A. candida, with respect to the accumulation of chemical defenses. After this stage, despite the higher phytoalexin concentration, the "compatible" races could overcome the plant defense system for further infection, but growth of the "incompatible" races was inhibited. Since results of bioassays showed that cyclobrassinin and brassilexin were more inhibitory to A. candida than rutalexin, the apparent redirection of the phytoalexin pathway towards rutalexin, avoiding cyclobrassinin and brassilexin accumulation might be caused by the pathogen. Alternatively, A. candida might be able to detoxify both cyclobrassinin and brassilexin, similar to necrotrophic plant pathogens. Overall, the correlation between phytoalexin production in infected or stressed leaves and the outcome of the plant-pathogen interaction suggested that A. candida was able to elude the plant defense mechanisms by, for example, redirecting the phytoalexin biosynthetic pathway.


Assuntos
Brassica napus/metabolismo , Brassica rapa/metabolismo , Oomicetos/crescimento & desenvolvimento , Terpenos/metabolismo , Brassica napus/efeitos dos fármacos , Brassica napus/microbiologia , Brassica rapa/efeitos dos fármacos , Brassica rapa/microbiologia , Cromatografia Líquida de Alta Pressão , Cobre/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Sesquiterpenos , Espectrometria de Massas por Ionização por Electrospray , Fitoalexinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...