Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 47(11): 5791-5801, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32974938

RESUMO

PURPOSE: The purpose of this study was to investigate for the first time the performance of a synthetic single crystal diamond detector for the microdosimetric characterization of clinical 62 MeV ocular therapy proton beams. METHODS: A novel diamond microdosimeter with a well-defined sensitive volume was fabricated and tested with a monoenergetic and spread-out Bragg peak (SOBP) of the CATANA therapeutic proton beam in Catania, Italy. The whole sensitive volume of the detector has an active planar-sectional area of 100 µm × 100 µm and a thickness of approximately 6.3 um. Microdosimetric measurements were performed at several water equivalent depths, corresponding to positions of clinical relevance. From the measured spectra, microdosimetric quantities such as the frequency mean lineal energy ( y ¯ F ), dose mean lineal energy ( y ¯ D ) as well as microdosimetric relative biological effectiveness (RBEµ ) values were derived for each depth along both a pristine Bragg curve and SOBP. Finally, Geant4 Monte Carlo simulations were performed modeling the detector geometry and CATANA beamline in order to calculate the average linear energy transfer (LET) values in the diamond active layer and water. RESULTS: The microdosimetric spectra acquired by the diamond microdosimeter show different shapes as a function of the water equivalent depths. No spectral distortion, due to pile-up events and polarization effects, was observed. The experimental spectra have a very low detection threshold due to the electronic noise during the irradiation of about 1 keV/µm. The y ¯ F and y ¯ D values were in agreement with expected trends, showing a sharp increase in mean lineal energy at the distal edge of the Bragg peak. In addition, a good agreement between the mean lineal energy values and the calculated average LET ones was also observed. Finally, the RBE values evaluated with the diamond microdosimeter were in excellent agreement with those obtained with a mini tissue equivalent proportional counter as well as with radiobiological measurements in the same proton beam field. CONCLUSIONS: The microdosimetric performance of the tested synthetic single crystal diamond microdosimeter clearly indicates its suitability for quality assurance in clinical proton therapy beam.


Assuntos
Diamante , Terapia com Prótons , Transferência Linear de Energia , Método de Monte Carlo , Prótons , Radiometria , Eficiência Biológica Relativa
2.
Phys Med ; 52: 113-121, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30139599

RESUMO

PURPOSE: The aim of this paper is to investigate the limits of LET monitoring of therapeutic carbon ion beams with miniaturized microdosimetric detectors. METHODS: Four different miniaturized microdosimeters have been used at the 62 MeV/u 12C beam of INFN Southern National Laboratory (LNS) of Catania for this purpose, i.e. a mini-TEPC and a GEM-microdosimeter, both filled with propane gas, and a silicon and a diamond microdosimeter. The y-D (dose-mean lineal energy) values, measured at different depths in a PMMA phantom, have been compared withLET¯D (dose-mean LET) values in water, calculated at the same water-equivalent depth with a Monte Carlo simulation setup based on the GEANT4 toolkit. RESULTS: In these first measurements, no detector was found to be significantly better than the others as a LET monitor. The y-D relative standard deviation has been assessed to be 13% for all the detectors. On average, the ratio between y-D and LET¯D values is 0.9 ±â€¯0.3, spanning from 0.73 ±â€¯0.08 (in the proximal edge and Bragg peak region) to 1.1 ±â€¯0.3 at the distal edge. CONCLUSIONS: All the four microdosimeters are able to monitor the dose-mean LET with the 11% precision up to the distal edge. In the distal edge region, the ratio of y-D to LET¯D changes. Such variability is possibly due to a dependence of the detector response on depth, since the particle mean-path length inside the detectors can vary, especially in the distal edge region.


Assuntos
Radiometria/instrumentação , Calibragem , Isótopos de Carbono/uso terapêutico , Simulação por Computador , Desenho de Equipamento , Radioterapia com Íons Pesados/instrumentação , Miniaturização , Método de Monte Carlo , Imagens de Fantasmas , Polimetil Metacrilato , Dosagem Radioterapêutica , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...