Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 5(6): e01966, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31297463

RESUMO

TiO2 photocatalysis represents a promising class of oxidation techniques that are intended to be both supplementary and complementary to the conventional approaches for the removal of refractory and trace organic contaminants in water and air. Powdered TiO2 dispersion systems employed in most studies require an additional separation step to recover the catalyst from the effluent water, which represents a major drawback for large scale applications. The optimization of photocatalytic treatment systems involves merging the benefits of catalyst immobilization on a retainable support, thus eliminating the need for downstream catalyst separation, maximization of photon-exposed catalyst area, and continuous operation. Aiming to integrate such conditions into a single system, a bench-scale annular photo-reactor with concentric UV-C lamp was built to study the photocatalytic mineralization of phenol on fluidized silica gel beads coated with sol-gel-synthetized TiO2. Reactor efficiency was investigated for different silica particle diameters (224, 357 and 461 µm), fluidized-bed concentrations in the bulk liquid (5, 10, 20 and 30 g L-1), initial phenol concentrations in the aqueous solution (0.25 mmol L-1 to 4.0 mmol L-1), and single and multiple sol-gel depositions. Then, the resulting optimum reactor configuration was compared to that of the same process on suspended Degussa P25 TiO2 nanoparticles under similar experimental conditions. The latter is expected to be more efficient, but post-treatment catalyst recovery, being an energy intensive process, represents a major limitation for large scale applications. Process efficiency was measured as a function of the accumulated energy necessary for the mineralization of 50% of the initial dissolved chemical oxygen demand (COD), or, Q0.5. Results showed that for any given mass of fluidized bed material, photo-oxidation efficiency increases with decreasing particle size (even for bed concentrations with similar equivalent surface area), decreasing initial phenol concentrations, and increasing number of sol-gel coatings. It was found that, for any given particle size and contaminant mass, there is an optimum bed concentration of 20 g L-1 for which Q0.5 reaches a minimum. Finally, under the optimum configuration, the fluidized-bed reactor efficiency is only 30% lower than that of photocatalysis on suspended TiO2 nanopowder, thus making the proposed fluidized system a viable alternative to slurry-TiO2 reactors.

2.
J Environ Manage ; 144: 42-50, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24908614

RESUMO

US and international regulations pertaining to the control of bilge water discharges from ships have concentrated their attention to the levels of oil and grease rather than to the heavy metal concentrations. The consensus is that any discharge of bilge water (and oily water emulsion within 12 nautical miles from the nearest land cannot exceed 15 parts per million (ppm). Since there is no specific regulation for metal pollutants under the bilge water section, reference standards regulating heavy metal concentrations are taken from the ambient water quality criteria to protect aquatic life. The research herein presented discusses electro-coagulation (EC) as a method to treat bilge water, with a focus on oily emulsions and heavy metals (copper, nickel and zinc) removal efficiency. Experiments were run using a continuous flow reactor, manufactured by Ecolotron, Inc., and a synthetic emulsion as artificial bilge water. The synthetic emulsion contained 5000 mg/L of oil and grease, 5 mg/L of copper, 1.5 mg/L of nickel, and 2.5 mg/l of zinc. The experimental results demonstrate that EC is very efficient in removing oil and grease. For oil and grease removal, the best treatment and cost efficiency was obtained when using a combination of carbon steel and aluminum electrodes, at a detention time less than one minute, a flow rate of 1 L/min and 0.6 A/cm(2) of current density. The final effluent oil and grease concentration, before filtration, was always less than 10 mg/L. For heavy metal removal, the combination of aluminum and carbon steel electrodes, flow rate of 1 L/min, effluent recycling, and 7.5 amps produced 99% zinc removal efficiency. Copper and nickel are harder to remove, and a removal efficiency of 70% was achieved.


Assuntos
Navios , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Eletrodos , Filtração , Hidrocarbonetos/química , Metais Pesados/química , Poluição por Petróleo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...