Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 7(4): e0026422, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35920548

RESUMO

The model organism Dinoroseobacter shibae and many other marine Rhodobacterales (Roseobacteraceae, Alphaproteobacteria) are characterized by a multipartite genome organization. Here, we show that the original isolate (Dshi-6) contained six extrachromosomal replicons (ECRs), whereas the strain deposited at the DSMZ (Dshi-5) lacked a 102-kb plasmid. To determine the role of the sixth plasmid, we investigated the genomic and physiological differences between the two strains. Therefore, both genomes were (re)sequenced, and gene expression, growth, and substrate utilization were examined. For comparison, we included additional plasmid-cured strains in the analysis. In the Dshi-6 population, the conjugative 102-kb RepABC-9 plasmid was present in only about 50% of the cells, irrespective of its experimentally validated stability. In the presence of the sixth plasmid, copy number changes of other ECRs, in particular, a decrease of the 86-kb plasmid, were observed. The most conspicuous finding was the strong influence of plasmids on chromosomal gene expression, especially the repression of the CtrA regulon and the activation of the denitrification gene cluster. Expression is inversely controlled by either the presence of the 102-kb plasmid or the absence of the 86-kb plasmid. We identified regulatory genes on both plasmids, i.e., a sigma 70 factor and a quorum sensing synthase, that might be responsible for these major changes. The tremendous effects that were probably even underestimated challenge the current understanding of the relevance of volatile plasmids not only for the original host but also for new recipients after conjugation. IMPORTANCE Plasmids are small DNA molecules that replicate independently of the bacterial chromosome. The common view of the role of plasmids is dominated by the accumulation of resistance genes, which is responsible for the antibiotic crisis in health care and livestock breeding. Beyond rapid adaptations to a changing environment, no general relevance for the host cell's regulome was attributed to these volatile ECRs. The current study shows for the model organism D. shibae that its chromosomal gene expression is strongly influenced by two plasmids. We provide evidence that the gain or loss of plasmids not only results in minor alterations of the genetic repertoire but also can have tremendous effects on bacterial physiology. The central role of some plasmids in the regulatory network of the host could also explain their persistence despite fitness costs, which has been described as the "plasmid paradox."


Assuntos
Rhodobacteraceae , Plasmídeos/genética , Rhodobacteraceae/genética , Replicon/genética , Expressão Gênica
2.
Microorganisms ; 10(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35456790

RESUMO

Copiotrophic marine bacteria of the Roseobacter group (Rhodobacterales, Alphaproteobacteria) are characterized by a multipartite genome organization. We sequenced the genomes of Sulfitobacter indolifex DSM 14862T and four related plasmid-rich isolates in order to investigate the composition, distribution, and evolution of their extrachromosomal replicons (ECRs). A combination of long-read PacBio and short-read Illumina sequencing was required to establish complete closed genomes that comprised up to twelve ECRs. The ECRs were differentiated in stably evolving chromids and genuine plasmids. Among the chromids, a diagnostic RepABC-8 replicon was detected in four Sulfitobacter species that likely reflects an evolutionary innovation that originated in their common ancestor. Classification of the ECRs showed that the most abundant plasmid system is RepABC, followed by RepA, DnaA-like, and RepB. However, the strains also contained three novel plasmid types that were designated RepQ, RepY, and RepW. We confirmed the functionality of their replicases, investigated the genetic inventory of the mostly cryptic plasmids, and retraced their evolutionary origin. Remarkably, the RepY plasmid of S. pontiacus DSM 110277 is the first high copy-number plasmid discovered in Rhodobacterales.

3.
Microb Genom ; 8(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35254236

RESUMO

The roseobacter group of marine bacteria is characterized by a mosaic distribution of ecologically important phenotypes. These are often encoded on mobile extrachromosomal replicons. So far, conjugation had only been experimentally proven between the two model organisms Phaeobacter inhibens and Dinoroseobacter shibae. Here, we show that two large natural RepABC-type plasmids from D. shibae can be transferred into representatives of all known major Rhodobacterales lineages. Complete genome sequencing of the newly established Phaeobacter inhibens transconjugants confirmed their genomic integrity. The conjugated plasmids were stably maintained as single copy number replicons in the genuine as well as the new host. Co-cultivation of Phaeobacter inhibens and the transconjugants with the dinoflagellate Prorocentrum minimum demonstrated that Phaeobacter inhibens is a probiotic strain that improves the yield and stability of the dinoflagellate culture. The transconjugant carrying the 191 kb plasmid, but not the 126 kb sister plasmid, killed the dinoflagellate in co-culture.


Assuntos
Dinoflagellida , Roseobacter , Dinoflagellida/genética , Plasmídeos/genética , Replicon , Rhodobacteraceae , Roseobacter/genética
4.
Proc Natl Acad Sci U S A ; 116(41): 20568-20573, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548387

RESUMO

Horizontal gene transfer (HGT) plays an important role in bacterial evolution and serves as a driving force for bacterial diversity and versatility. HGT events often involve mobile genetic elements like plasmids, which can promote their own dissemination by associating with adaptive traits in the gene pool of the so-called mobilome. Novel traits that evolve through HGT can therefore lead to the exploitation of new ecological niches, prompting an adaptive radiation of bacterial species. In this study, we present phylogenetic, biogeographic, and functional analyses of a previously unrecognized RepL-type plasmid found in diverse members of the marine Roseobacter group across the globe. Noteworthy, 100% identical plasmids were detected in phylogenetically and geographically distant bacteria, revealing a so-far overlooked, but environmentally highly relevant vector for HGT. The genomic and functional characterization of this plasmid showed a completely conserved backbone dedicated to replication, stability, and mobilization as well as an interchangeable gene cassette with highly diverse, but recurring motifs. The majority of the latter appear to be involved in mechanisms coping with toxins and/or pollutants in the marine environment. Furthermore, we provide experimental evidence that the plasmid has the potential to be transmitted across bacterial orders, thereby increasing our understanding of evolution and microbial niche adaptation in the environment.


Assuntos
Proteínas de Bactérias/genética , Meio Ambiente , Transferência Genética Horizontal , Plasmídeos/genética , Roseobacter/genética , Evolução Molecular , Genoma Bacteriano , Geografia , Filogenia , Recombinação Genética , Roseobacter/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...