Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Atmos Ocean Technol ; 38(2): 167-180, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34054205

RESUMO

Accurate, physically based precipitation retrieval over global land surfaces is an important goal of the NASA/JAXA Global Precipitation Measurement Mission (GPM). This is a difficult problem for the passive microwave constellation, as the signal over radiometrically warm land surfaces in the microwave frequencies means that the measurements used are indirect and typically require inferring some type of relationship between an observed scattering signal and precipitation at the surface. GPM, with collocated radiometer and dual-frequency radar, is an excellent tool for tackling this problem and improving global retrievals. In the years following the launch of the GPM Core Observatory satellite, physically based passive microwave retrieval of precipitation over land continues to be challenging. Validation efforts suggest that the operational GPM passive microwave algorithm, the Goddard profiling algorithm (GPROF), tends to overestimate precipitation at the low (<5 mm h-1) end of the distribution over land. In this work, retrieval sensitivities to dynamic surface conditions are explored through enhancement of the algorithm with dynamic, retrieved information from a GPM-derived optimal estimation scheme. The retrieved parameters describing surface and background characteristics replace current static or ancillary GPROF information including emissivity, water vapor, and snow cover. Results show that adding this information decreases probability of false detection by 50% and, most importantly, the enhancements with retrieved parameters move the retrieval away from dependence on ancillary datasets and lead to improved physical consistency.

2.
J Atmos Ocean Technol ; 38(2): 293-311, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34054206

RESUMO

This study focuses on the ability of the Global Precipitation Measurement (GPM) passive microwave sensors to detect and provide quantitative precipitation estimates (QPE) for extreme lake-effect snowfall events over the U.S. lower Great Lakes region. GPM Microwave Imager (GMI) high-frequency channels can clearly detect intense shallow convective snowfall events. However, GMI Goddard Profiling (GPROF) QPE retrievals produce inconsistent results when compared with the Multi-Radar Multi-Sensor (MRMS) ground-based radar reference dataset. While GPROF retrievals adequately capture intense snowfall rates and spatial patterns of one event, GPROF systematically underestimates intense snowfall rates in another event. Furthermore, GPROF produces abundant light snowfall rates that do not accord with MRMS observations. Ad hoc precipitation-rate thresholds are suggested to partially mitigate GPROF's overproduction of light snowfall rates. The sensitivity and retrieval efficiency of GPROF to key parameters (2-m temperature, total precipitable water, and background surface type) used to constrain the GPROF a priori retrieval database are investigated. Results demonstrate that typical lake-effect snow environmental and surface conditions, especially coastal surfaces, are underpopulated in the database and adversely affect GPROF retrievals. For the two presented case studies, using a snow-cover a priori database in the locations originally deemed as coastline improves retrieval. This study suggests that it is particularly important to have more accurate GPROF surface classifications and better representativeness of the a priori databases to improve intense lake-effect snow detection and retrieval performance.

3.
J Geophys Res Atmos ; 123(17): 9279-9295, 2018 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32832311

RESUMO

The primary signal used in all current passive microwave precipitation retrieval algorithms over land is the depression of the instantaneous brightness temperature (TB) caused by ice scattering. This study presents a new methodology to retrieve instantaneous precipitation rate over land by using TB temporal variation (ΔTB) at 19 GHz, which primarily reflects the surface emissivity variation due to the precipitation impact. As a proof-of-concept, we exploit observations from five polar-orbiting satellites over the Southern Great Plains (SGP) of the United States. Results show that ΔTB at 19 GHz correlate well with the instantaneous precipitation rate. Further analysis shows that ΔTB at 19 GHz is better correlated with the precipitation rate when multiple satellite observations are used due to the much shorter re-visit time for a certain location. The retrieved instantaneous precipitation rate over SGP from ΔTB at 19 GHz reasonably agrees with the surface radar observations, with the correlation, the root mean square error and the bias being 0.49, 2.39 mm/hr and 6.54%, respectively. Future work seeks to combine the ice scattering signal at high frequencies and this surface emissivity variation signal at low frequencies to achieve an optimal retrieval performance.

4.
IEEE Trans Geosci Remote Sens ; 54(2): 1103-1117, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29795962

RESUMO

Better estimation of land surface microwave emissivity promises to improve over-land precipitation retrievals in the GPM era. Forward models of land microwave emissivity are available but have suffered from poor parameter specification and limited testing. Here, forward models are calibrated and the accompanying change in predictive power is evaluated. With inputs (e.g., soil moisture) from the Noah land surface model and applying MODIS LAI data, two microwave emissivity models are tested, the Community Radiative Transfer Model (CRTM) and Community Microwave Emission Model (CMEM). The calibration is conducted with the NASA Land Information System (LIS) parameter estimation subsystem using AMSR-E based emissivity retrievals for the calibration dataset. The extent of agreement between the modeled and retrieved estimates is evaluated using the AMSR-E retrievals for a separate 7-year validation period. Results indicate that calibration can significantly improve the agreement, simulating emissivity with an across-channel average root-mean-square-difference (RMSD) of about 0.013, or about 20% lower than if relying on daily estimates based on climatology. The results also indicate that calibration of the microwave emissivity model alone, as was done in prior studies, results in as much as 12% higher across-channel average RMSD, as compared to joint calibration of the land surface and microwave emissivity models. It remains as future work to assess the extent to which the improvements in emissivity estimation translate into improvements in precipitation retrieval accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...