Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202402078, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753586

RESUMO

Globally, traumatic injury is a leading cause of suffering and death. The ability to curtail damage and ensure survival after major injury requires a time-sensitive response balancing organ perfusion, blood loss, and portability, underscoring the need for novel therapies for the prehospital environment. Currently, there are few options available for damage control resuscitation (DCR) of trauma victims. We hypothesize that synthetic polymers, which are tunable, portable, and stable under austere conditions, can be developed as effective injectable therapies for trauma medicine. In this work, we design injectable polymers for use as low volume resuscitants (LVRs). Using RAFT polymerization, we evaluate the effect of polymer size, architecture, and chemical composition upon both blood coagulation and resuscitation in a rat hemorrhagic shock model. Our therapy is evaluated against a clinically used colloid resuscitant, Hextend. We demonstrate that a radiant star poly(glycerol monomethacrylate) polymer did not interfere with coagulation while successfully correcting metabolic deficit and resuscitating animals from hemorrhagic shock to the desired mean arterial pressure range for DCR - correcting a 60 % total blood volume (TBV) loss when given at only 10 % TBV. This highly portable and non-coagulopathic resuscitant has profound potential for application in trauma medicine.

2.
Blood ; 142(8): 724-741, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37363829

RESUMO

Immune cell inflammation is implicated in the pathophysiology of acute trauma-induced coagulopathy (TIC). We hypothesized that leukocyte inflammation contributes to TIC through the oxidation and proteolysis of fibrinogen. To test this hypothesis, antioxidants and a novel anti-inflammatory melanocortin fusion protein (AQB-565) were used to study the effects of interleukin-6 (IL-6)-stimulated human leukocytes on fibrinogen using single-cell imaging flow cytometry and multiplex fluorescent western blotting. We also studied the effects of AQB-565 on fibrinogen using an in vivo rat trauma model of native TIC. IL-6 induced cellular inflammation and mitochondrial superoxide production in human monocytes, causing fibrinogen oxidation and degradation in vitro. Antioxidants suppressing mitochondrial superoxide reduced oxidative stress and inflammation and protected fibrinogen. AQB-565 decreased inflammation, inhibited mitochondrial superoxide, and protected fibrinogen in vitro. Trauma with hemorrhagic shock increased IL-6 and other proinflammatory cytokines and chemokines, selectively oxidized and degraded fibrinogen, and induced TIC in rats in vivo. AQB-565, given at the onset of hemorrhage, blocked inflammation, protected fibrinogen from oxidation and degradation, and prevented TIC. Leukocyte activation contributes to TIC through the oxidation and degradation of fibrinogen, which involves mitochondrial superoxide and cellular inflammation. Suppression of inflammation by activation of melanocortin pathways may be a novel approach for the prevention and treatment of TIC.


Assuntos
Transtornos da Coagulação Sanguínea , Hemostáticos , Humanos , Ratos , Animais , Fibrinogênio/metabolismo , Interleucina-6 , Antioxidantes , Superóxidos , Transtornos da Coagulação Sanguínea/metabolismo , Inflamação/complicações
3.
Redox Biol ; 51: 102263, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35158163

RESUMO

Critical illness leads to rapid fibrinogen consumption, hyperfibrinolysis, and coagulopathy that exacerbates bleeding and increases mortality. Immune cell activation and inflammation are associated with coagulopathy after injury but play an undetermined role. We performed high dimensional immunophenotyping and single-cell imaging flow cytometry to investigate for a pathophysiological mechanism governing the effects of leukocyte-associated inflammation on fibrinogen function. Fibrinogen was oxidized early, followed by its degradation after 3 hours of lipopolysaccharides (LPS)-induced sterile inflammation in a rat model in vivo. Fibrinogen incubated with human leukocytes activated by TNFα was similarly oxidized, and later proteolyzed after 3 hours in vitro. TNFα induced mitochondrial superoxide generation from neutrophils and monocytes, myeloperoxidase (MPO)-derived reactive oxygen species (ROS) from neutrophils, and nitric oxide from lymphocytes and monocytes. Inhibition of mitochondrial superoxide prevented oxidative modification and proteolysis of fibrinogen, whereas inhibition of MPO attenuated only fibrinogen proteolysis. Quenching of both mitochondrial superoxide and MPO-derived ROS prevented coagulopathy better than tranexamic acid. Collectively, these findings indicate that neutrophil and monocyte mitochondrial superoxide generation can rapidly oxidize fibrinogen as a priming step for fibrinogen proteolysis and coagulopathy during inflammation.


Assuntos
Fibrinogênio , Fator de Necrose Tumoral alfa , Animais , Fibrinogênio/metabolismo , Fibrinogênio/farmacologia , Inflamação/metabolismo , Leucócitos/metabolismo , Neutrófilos/metabolismo , Estresse Oxidativo , Proteólise , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Sci Rep ; 10(1): 20116, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208779

RESUMO

The adhesion of blood clots to wounds is necessary to seal injured vasculature and achieve hemostasis. However, it has not been specifically tested if adhesive failure of clots is a major contributor to rebleeding and what mechanisms prevent clot delamination. Here, we quantified the contribution of adhesive and cohesive failure to rebleeding in a rat model of femoral artery injury, and identified mechanisms that contribute to the adhesive strength of bulk clots in a lap-shear test in vitro. In the rat bleeding model, the frequency of clot failures correlated positively with blood loss (R = 0.81, p = 0.014) and negatively with survival time (R = - 0.89, p = 0.0030), with adhesive failures accounting for 51 ± 14% of rebleeds. In vitro, adhesion depended on fibrinogen and coagulation factor XIII (FXIII), and supraphysiological FXIII improved adhesive strength. Furthermore, when exogenous FXIII was topically applied into the wound pocket of rats, eleven adhesive failures occurred between eight rats, compared to seventeen adhesive failures between eight untreated rats, whereas the number of cohesive failures remained the same at sixteen in both groups. In conclusion, rebleeding from both adhesive and cohesive failure of clots decreases survival from hemorrhage in vivo. Both endogenous and exogenous FXIII improves the adhesive strength of clots.


Assuntos
Fator XIII/metabolismo , Hemostasia/fisiologia , Trombose/patologia , Administração Tópica , Animais , Plaquetas/citologia , Eritrócitos/citologia , Fator XIII/administração & dosagem , Fator XIII/farmacologia , Artéria Femoral/lesões , Fibrinogênio/metabolismo , Hemorragia/sangue , Hemorragia/mortalidade , Hemorragia/patologia , Hemostasia/efeitos dos fármacos , Humanos , Masculino , Ratos Sprague-Dawley , Ferimentos e Lesões/patologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-31236496

RESUMO

Disorders of sleep and wakefulness occur in the majority of individuals who have experienced traumatic brain injury (TBI), with increased sleep need and excessive daytime sleepiness often reported. Behavioral and pharmacological therapies have limited efficacy, in part, because the etiology of post-TBI sleep disturbances is not well understood. Severity of injuries resulting from head trauma in humans is highly variable, and as a consequence so are their sequelae. Here, we use a controlled laboratory model to investigate the effects of TBI on sleep-wake behavior and on candidate neurotransmitter systems as potential mediators. We focus on hypocretin and melanin-concentrating hormone (MCH), hypothalamic neuropeptides important for regulating sleep and wakefulness, and two potential downstream effectors of hypocretin actions, histamine and acetylcholine. Adult male C57BL/6 mice (n=6-10/group) were implanted with EEG recording electrodes and baseline recordings were obtained. After baseline recordings, controlled cortical impact was used to induce mild or moderate TBI. EEG recordings were obtained from the same animals at 7 and 15 days post-surgery. Separate groups of animals (n=6-8/group) were used to determine effects of TBI on the numbers of hypocretin and MCH-producing neurons in the hypothalamus, histaminergic neurons in the tuberomammillary nucleus, and cholinergic neurons in the basal forebrain. At 15 days post-TBI, wakefulness was decreased and NREM sleep was increased during the dark period in moderately injured animals. There were no differences between groups in REM sleep time, nor were there differences between groups in sleep during the light period. TBI effects on hypocretin and cholinergic neurons were such that more severe injury resulted in fewer cells. Numbers of MCH neurons and histaminergic neurons were not altered under the conditions of this study. Thus, we conclude that moderate TBI in mice reduces wakefulness and increases NREM sleep during the dark period, effects that may be mediated by hypocretin-producing neurons and/or downstream cholinergic effectors in the basal forebrain.

6.
J Neuroinflammation ; 12: 154, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26329692

RESUMO

BACKGROUND: Neuroinflammation is an important secondary mechanism that is a key mediator of the long-term consequences of neuronal injury that occur in traumatic brain injury (TBI). Microglia are highly plastic cells with dual roles in neuronal injury and recovery. Recent studies suggest that the chemokine fractalkine (CX3CL1, FKN) mediates neural/microglial interactions via its sole receptor CX3CR1. CX3CL1/CX3CR1 signaling modulates microglia activation, and depending upon the type and time of injury, either protects or exacerbates neurological diseases. METHODS: In this study, mice deficient in CX3CR1 were subjected to mild controlled cortical impact injury (CCI), a model of TBI. We evaluated the effects of genetic deletion of CX3CR1 on histopathology, cell death/survival, microglia activation, and cognitive function for 30 days post-injury. RESULTS: During the acute post-injury period (24 h-15 days), motor deficits, cell death, and neuronal cell loss were more profound in injured wild-type than in CX3CR1(-/-) mice. In contrast, during the chronic period of 30 days post-TBI, injured CX3CR1(-/-) mice exhibited greater cognitive dysfunction and increased neuronal death than wild-type mice. The protective and deleterious effects of CX3CR1 were associated with changes in microglia phenotypes; during the acute phase CX3CR1(-/-) mice showed a predominant anti-inflammatory M2 microglial response, with increased expression of Ym1, CD206, and TGFß. In contrast, increased M1 phenotypic microglia markers, Marco, and CD68 were predominant at 30 days post-TBI. CONCLUSION: Collectively, these novel data demonstrate a time-dependent role for CX3CL1/CX3CR1 signaling after TBI and suggest that the acute and chronic responses to mild TBI are modulated in part by distinct microglia phenotypes.


Assuntos
Lesões Encefálicas , Encéfalo/patologia , Receptores de Quimiocinas/metabolismo , Análise de Variância , Animais , Lesões Encefálicas/complicações , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Receptor 1 de Quimiocina CX3C , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Citometria de Fluxo , Fluoresceínas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Leucócitos Mononucleares/patologia , Ativação de Macrófagos/genética , Ativação de Macrófagos/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Transtornos Psicomotores/etiologia , Receptores de Quimiocinas/genética , Teste de Desempenho do Rota-Rod , Fatores de Tempo
7.
Brain Behav Immun ; 50: 259-265, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26218294

RESUMO

The factors by which aging predisposes to critical illness are varied, complex, and not well understood. Sepsis is considered a quintessential disease of old age because the incidence and mortality of severe sepsis increases in old and the oldest old individuals. Aging is associated with dramatic changes in sleep quality and quantity and sleep increasingly becomes fragmented with age. In healthy adults, sleep disruption induces inflammation. Multiple aspects of aging and of sleep dysregulation interact via neuroimmune mechanisms. Tumor necrosis factor-α (TNF), a cytokine involved in sleep regulation and neuroimmune processes, exerts some of its effects on the CNS by crossing the blood-brain barrier (BBB). In this study we examined the impact of sepsis, sleep fragmentation, and aging on BBB disruption and TNF transport into brain. We used the cecal ligation and puncture (CLP) model of sepsis in young and aged mice that were either undisturbed or had their sleep disrupted. There was a dichotomous effect of sepsis and sleep disruption with age: sepsis disrupted the BBB and increased TNF transport in young mice but not in aged mice, whereas sleep fragmentation disrupted the BBB and increased TNF transport in aged mice, but not in young mice. Combining sleep fragmentation and CLP did not produce a greater effect on either of these BBB parameters than did either of these manipulations alone. These results suggest that the mechanisms by which sleep fragmentation and sepsis alter BBB functions are fundamentally different from one another and that a major change in the organism's responses to those insults occurs with aging.


Assuntos
Envelhecimento , Barreira Hematoencefálica/metabolismo , Sepse/metabolismo , Sono , Fator de Necrose Tumoral alfa/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
J Neurosci Methods ; 219(1): 104-12, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-23872243

RESUMO

BACKGROUND: Sleep disruption is a frequent occurrence in modern society. Whereas many studies have focused on the consequences of total sleep deprivation, few have investigated the condition of sleep disruption. NEW METHOD: We disrupted sleep of mice during the light period for 9 consecutive days using an intermittently rotating disc. RESULTS: Electroencephalogram (EEG) data demonstrated that non-rapid eye movement (NREM) sleep was severely fragmented and REM sleep was essentially abolished during the 12h light period. During the dark period, when sleep was not disrupted, neither NREM sleep nor REM sleep times differed from control values. Analysis of the EEG revealed a trend for increased power in the peak frequency of the NREM EEG spectra during the dark period. The fragmentation protocol was not overly stressful as body weights and water consumption remained unchanged, and plasma corticosterone did not differ between mice subjected to 3 or 9 days of sleep disruption and home cage controls. However, mice subjected to 9 days of sleep disruption by this method responded to lipopolysaccharide with an exacerbated febrile response. COMPARISON WITH EXISTING METHODS: Existing methods to disrupt sleep of laboratory rodents often subject the animal to excessive locomotion, vibration, or sudden movements. This method does not suffer from any of these confounds. CONCLUSIONS: This study demonstrates that prolonged sleep disruption of mice exacerbates febrile responses to lipopolysaccharide. This device provides a method to determine mechanisms by which chronic insufficient sleep contributes to the etiology of many pathologies, particularly those with an inflammatory component.


Assuntos
Febre/induzido quimicamente , Febre/fisiopatologia , Lipopolissacarídeos/farmacologia , Transtornos do Sono-Vigília/induzido quimicamente , Transtornos do Sono-Vigília/fisiopatologia , Animais , Comportamento Animal , Peso Corporal/efeitos dos fármacos , Doença Crônica , Corticosterona/sangue , Interpretação Estatística de Dados , Ingestão de Líquidos/efeitos dos fármacos , Eletroencefalografia/efeitos dos fármacos , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sono/efeitos dos fármacos , Sono/fisiologia , Sono REM/efeitos dos fármacos , Sono REM/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...