Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Liver Int ; 44(8): 1775-1780, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38709598

RESUMO

This study utilized digital PCR to quantify HBV RNA and HBV DNA within three regions of the HBV genome. Analysis of 75 serum samples from patients with chronic infection showed that HBV RNA levels were higher in core than in S and X regions (median 7.20 vs. 6.80 and 6.58 log copies/mL; p < .0001), whereas HBV DNA levels showed an inverse gradient (7.71 vs. 7.73 and 7.77 log copies/mL, p < .001). On average 80% of the nucleic acid was DNA by quantification in core. The core DNA/RNA ratio was associated with viral load and genotype. In individual patients, the relations between RNA levels in core, S and X were stable over time (n = 29; p = .006). The results suggest that pregenomic RNA is completely reverse transcribed to minus DNA in ≈75% of the virus particles, whereas the remaining 25% contain both RNA and DNA of lengths that reflect variable progress of the polymerase.


Assuntos
DNA Viral , Vírus da Hepatite B , Hepatite B Crônica , RNA Viral , Carga Viral , Vírus da Hepatite B/genética , Humanos , DNA Viral/sangue , RNA Viral/sangue , Hepatite B Crônica/sangue , Hepatite B Crônica/virologia , Masculino , Feminino , Genótipo , Adulto , Pessoa de Meia-Idade
2.
J Infect Dis ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38271697

RESUMO

INTRODUCTION: Hepatitis B virus (HBV) DNA may become integrated into the human genome of infected human hepatocytes. Expression of integrations can produce the surface antigen (HBsAg) that is required for synthesis of hepatitis D virus (HDV) particles and the abundant subviral particles in the blood of HBV- and HDV-infected subjects. Knowledge about the extent and variation of HBV integrations and impact on chronic HDV is still limited. METHODS: We investigated 50 pieces of liver explant tissue from five patients with hepatitis D-induced cirrhosis, using a deep sequencing strategy targeting HBV RNA. RESULTS: We found that integrations were abundant and highly expressed, however with large variation in number of integration derived (HBV/human chimeric) reads, both between and within patients. The median number of unique integrations for each patient correlated with serum levels of both HBsAg. Still, most of the HBV reads represented a few predominant integrations. CONCLUSIONS: The results suggest that HBV DNA integrates in a large proportion of hepatocytes, and that the HBsAg output from these integrations vary >100-fold depending on clone size and expression rate. A small part of the integrations seems to determine the serum levels of HBsAg and HDV RNA in HBV/HDV co-infected patients with liver cirrhosis.

4.
Front Immunol ; 14: 1287287, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928515

RESUMO

Background and aims: Cirrhosis entails high risk of serious infections and abated efficiency of vaccination, but the underlying mechanisms are only partially understood. This study aimed at characterizing innate and adaptive immune functions, including antigen-specific T cell responses to COVID-19 vaccination, in patients with compensated and decompensated cirrhosis. Methods: Immune phenotype and function in peripheral blood from 42 cirrhotic patients and 44 age-matched healthy controls were analysed after two doses of the mRNA-based COVID-19 vaccines [BNT162b2 (Pfizer BioNTech) or mRNA-1273 (Moderna)]. Results: Cirrhotic patients showed significantly reduced blood counts of antigen-presenting dendritic cells (DC) and high counts of monocytic myeloid-derived suppressor cells (M-MDSC) as compared to healthy controls. In addition, monocytic cells recovered from cirrhotic patients showed impaired expression of the antigen-presenting molecule HLA-DR and the co-stimulatory molecule CD86 upon Toll-like receptor (TLR) stimulation. These features were more prominent in patients with decompensated cirrhosis (Child-Pugh classes B & C). Interestingly, while patients with compensated cirrhosis (Child-Pugh class A) showed an inflammatory profile with myeloid cells producing the proinflammatory cytokines IL-6 and TNF, decompensated patients produced reduced levels of these cytokines. Cirrhotic patients, in particular those with more advanced end-stage liver disease, mounted reduced antigen-specific T cell reactivity to COVID-19 vaccination. Vaccine efficiency inversely correlated with levels of M-MDSC. Conclusion: These results implicate MDSC as mediators of immunosuppression, with ensuing deficiency of vaccine-specific T cell responses, in cirrhosis.


Assuntos
COVID-19 , Células Supressoras Mieloides , Humanos , Linfócitos T , Vacinas contra COVID-19 , Vacina BNT162 , Vacinação , Cirrose Hepática , Citocinas
5.
Infect Dis (Lond) ; 55(10): 744-750, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37395287

RESUMO

BACKGROUND: The immunogenicity of repeated vaccination and hybrid immunity in vulnerable patients remains unclear. METHODS: We studied the impact of iterative Covid-19 mRNA vaccination and hybrid immunity on antibody levels in immunosuppressed subjects. Patients with liver cirrhosis (n = 38), survivors of allogeneic haematopoietic stem cell transplantation (allo-HSCT) (n = 36) and patients with autoimmune liver disease (n = 14) along with healthy controls (n = 20) were monitored for SARS-CoV-2-S1 IgG after their 1st-3rd vaccine doses, 31 of whom became infected with the Omicron variant after the 2nd dose. Ten uninfected allo-HSCT recipients received an additional 4th vaccine dose. RESULTS: Unexpectedly, immunosuppressed patients achieved antibody levels in parity with controls after the 3rd vaccine dose. In all study cohorts, hybrid immunity (effect of vaccination and natural infection) resulted in approximately 10-fold higher antibody levels than vaccine-induced immunity alone. CONCLUSIONS: Three doses of the Covid-19 mRNA vaccine entailed high antibody concentrations even in immunocompromised individuals, and hybrid-immunity resulted further augmented levels than vaccination alone. Clinical trial registration: EudraCT 2021-000349-42.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Feminino , Gravidez , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Formação de Anticorpos , SARS-CoV-2 , Vacinação , Anticorpos Antivirais , Imunoglobulina G , RNA Mensageiro
6.
Genome Res ; 33(3): 299-313, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859333

RESUMO

Insights into host-virus interactions during SARS-CoV-2 infection are needed to understand COVID-19 pathogenesis and may help to guide the design of novel antiviral therapeutics. N 6-Methyladenosine modification (m6A), one of the most abundant cellular RNA modifications, regulates key processes in RNA metabolism during stress response. Gene expression profiles observed postinfection with different SARS-CoV-2 variants show changes in the expression of genes related to RNA catabolism, including m6A readers and erasers. We found that infection with SARS-CoV-2 variants causes a loss of m6A in cellular RNAs, whereas m6A is detected abundantly in viral RNA. METTL3, the m6A methyltransferase, shows an unusual cytoplasmic localization postinfection. The B.1.351 variant has a less-pronounced effect on METTL3 localization and loss of m6A than did the B.1 and B.1.1.7 variants. We also observed a loss of m6A upon SARS-CoV-2 infection in air/liquid interface cultures of human airway epithelia, confirming that m6A loss is characteristic of SARS-CoV-2-infected cells. Further, transcripts with m6A modification are preferentially down-regulated postinfection. Inhibition of the export protein XPO1 results in the restoration of METTL3 localization, recovery of m6A on cellular RNA, and increased mRNA expression. Stress granule formation, which is compromised by SARS-CoV-2 infection, is restored by XPO1 inhibition and accompanied by a reduced viral infection in vitro. Together, our study elucidates how SARS-CoV-2 inhibits the stress response and perturbs cellular gene expression in an m6A-dependent manner.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Metilação , RNA , RNA Viral/genética , Metiltransferases/genética
7.
Clin Immunol ; 248: 109248, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36720440

RESUMO

We analyzed magnitude and duration of SARS-CoV-2-specific T cell responses in healthy, infection-naïve subjects receiving COVID-19 vaccines. Overlapping peptides spanning the N-terminal spike 1 (S1) domain of the spike protein triggered secretion of the T cell-derived cytokine interleukin-2 ex vivo in 94/94 whole blood samples from vaccinated subjects at levels exceeding those recorded in all 45 pre-vaccination samples. S1-specific T cell reactivity was stronger in vaccinated subjects compared with subjects recovering from natural COVID-19 and decayed with an estimated half-life of 134 days in the first six months after the 2nd vaccination. We conclude that COVID-19 vaccination induces robust T cell immunity that subsequently declines. EudraCT 2021-000349-42. https://www.clinicaltrialsregister.eu/ctr-search/search?query=2021-000349-42.


Assuntos
COVID-19 , Humanos , Vacinas contra COVID-19 , SARS-CoV-2 , Linfócitos T , Vacinação , Anticorpos Antivirais
8.
Proc Natl Acad Sci U S A ; 119(30): e2203659119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858456

RESUMO

This study analyzed whole blood samples (n = 56) retrieved from 30 patients at 1 to 21 (median 9) mo after verified COVID-19 to determine the polarity and duration of antigen-specific T cell reactivity against severe acute respiratory syndrome coronavirus 2-derived antigens. Multimeric peptides spanning the entire nucleocapsid protein triggered strikingly synchronous formation of interleukin (IL)-4, IL-12, IL-13, and IL-17 ex vivo until ∼70 d after confirmed infection, whereafter this reactivity was no longer inducible. In contrast, levels of nucleocapsid-induced IL-2 and interferon-γ remained stable and highly correlated at 3 to 21 mo after infection. Similar cytokine dynamics were observed in unvaccinated, convalescent patients using whole-blood samples stimulated with peptides spanning the N-terminal portion of the spike 1 protein. These results unravel two phases of T cell reactivity following natural COVID-19: an early, synchronous response indicating transient presence of multipolar, antigen-specific T helper (TH) cells followed by an equally synchronous and durable TH1-like reactivity reflecting long-lasting T cell memory.


Assuntos
COVID-19 , Citocinas , SARS-CoV-2 , Linfócitos T Auxiliares-Indutores , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , COVID-19/sangue , COVID-19/imunologia , Convalescença , Citocinas/sangue , Humanos , Interferon gama/sangue , Proteínas do Nucleocapsídeo/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T Auxiliares-Indutores/imunologia
10.
JHEP Rep ; 4(7): 100496, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35502229

RESUMO

Background & Aims: Cirrhosis entails elevated risk of COVID-19-associated mortality. This study determined T cell-mediated and antibody reactivity against the spike 1 (S1) protein of SARS-CoV-2 among 48 patients with cirrhosis and 39 healthy controls after mRNA COVID-19 vaccination. Methods: SARS-CoV-2-specific T-cell reactivity was measured by induced level of T cell-derived interferon-γ (IFN-γ) in blood cells stimulated ex vivo with multimeric peptides spanning the N-terminal portion of S1. S1-induced IFN-γ was quantified before and after the 1st and 2nd vaccination (BNT162b2, Pfizer-BioNTech or mRNA-1273, Moderna) alongside serum IgG against the receptor-binding domain (RBD) within S1 (anti-RBD-S1 IgG). Results: T-cell reactivity against S1 was reduced in patients with cirrhosis after the 1st (p <0.001 vs. controls) and 2nd (p <0.001) vaccination. Sixty-eight percent of patients lacked detectable S1-specific T-cell reactivity after the 1st vaccination vs. 19% in controls (odds ratio 0.11, 95% CI 0.03-0.48, p = 0.003) and 36% remained devoid of reactivity after the 2nd vaccination vs. 6% in controls (odds ratio 0.12, 95% CI 0.03-0.59, p = 0.009). T-cell reactivity in cirrhosis remained significantly impaired after correction for potential confounders in multivariable analysis. Advanced cirrhosis (Child-Pugh class B) was associated with absent or lower T-cell responses (p <0.05 vs. Child-Pugh class A). The deficiency of T-cell reactivity was paralleled by lower levels of anti-RBD-S1 IgG after the 1st (p <0.001 vs. controls) and 2nd (p <0.05) vaccination. Conclusions: Patients with cirrhosis show deficient T-cell reactivity against SARS-CoV-2 antigens along with diminished levels of anti-RBD-S1 IgG after dual COVID-19 vaccination, highlighting the need for vigilance and additional preventative measures. Clinical trial registration: EudraCT 2021-000349-42. Lay summary: T cells are a pivotal component in the defence against viruses. We show that patients with cirrhosis have impaired SARS-CoV-2-specific T-cell responses and lower antibody levels after mRNA vaccination against COVID-19 compared with healthy controls. Patients with more advanced liver disease exhibited particularly inferior vaccine responses. These results call for additional preventative measures in these patients.

11.
J Med Virol ; 94(8): 3829-3839, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35403229

RESUMO

Respiratory infections are often caused by enteroviruses (EVs). The aim of this study was to identify whether certain types of EV were more likely to cause severe illness in 2016, when an increasing spread of upper respiratory infections was observed in Gothenburg, Sweden. The EV strain in 137 of 1341 nasopharyngeal samples reactive for EV by polymerase chain reaction could be typed by sequencing the viral 5'-untranslated region and VP1 regions. Phylogenetic trees were constructed. Patient records were reviewed. Hospital care was needed for 46 of 74 patients with available medical records. The majority of the patients (83) were infected with the rhinovirus (RV). The remaining 54 were infected with EV A, B, C, and D strains of 13 different types, with EV-D68 and CV-A10 being the most common (17 vs. 14). Significantly more patients with EV-D68 presented with dyspnea, both when compared with other EV types (p = 0.003) and compared to all other EV and RV infections (p = 0.04). Phylogenetic analysis of the sequences revealed the spread of both Asian and European CV-A10 strains and 12 different RV C types. This study showed an abundance of different EV types spreading during a year with increased upper respiratory increased infections. EV-D68 infections were associated with more severe disease manifestation. Other EV and RV types were more evenly distributed between hospitalized and nonhospitalized patients. The EV type CV-A10 was also found in infected patients, which warrants further studies and surveillance, as this pathogen could cause more severe disease and outbreaks of hand, foot, and mouth disease.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Enterovirus , Infecções Respiratórias , Surtos de Doenças , Enterovirus/genética , Humanos , Lactente , Filogenia , Rhinovirus/genética
14.
Blood Adv ; 6(9): 2723-2730, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35286374

RESUMO

Recipients of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for hematological diseases are at risk of severe disease and death from COVID-19. To determine the safety and immunogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines, samples from 50 infection-naive allo-HSCT recipients (median, 92 months from transplantation, range, 7-340 months) and 39 healthy controls were analyzed for serum immunoglobulin G (IgG) against the receptor binding domain (RBD) within spike 1 (S1) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; anti-RBD-S1 IgG) and for SARS-CoV-2-specific T-cell immunity, reflected by induction of T-cell-derived interferon-γ in whole blood stimulated ex vivo with 15-mer SI-spanning peptides with 11 amino acid overlap S1-spanning peptides. The rate of seroconversion was not significantly lower in allo-transplanted patients than in controls with 24% (12/50) and 6% (3/50) of patients remaining seronegative after the first and second vaccination, respectively. However, 58% of transplanted patients lacked T-cell responses against S1 peptides after 1 vaccination compared with 19% of controls (odds ratio [OR] 0.17; P = .009, Fisher's exact test) with a similar trend after the second vaccination where 28% of patients were devoid of detectable specific T-cell immunity, compared with 6% of controls (OR 0.18; P = .02, Fisher's exact test). Importantly, lack of T-cell reactivity to S1 peptides after vaccination heralded substandard levels (<100 BAU/mL) of anti-RBD-S1 IgG 5 to 6 months after the second vaccine dose (OR 8.2; P = .007, Fisher's exact test). We conclude that although allo-HSCT recipients achieve serum anti-RBD-S1 IgG against SARS-CoV-2 after 2 vaccinations, a deficiency of SARS-CoV-2-specific T-cell immunity may subsequently translate into insufficient humoral responses.


Assuntos
COVID-19 , Transplante de Células-Tronco Hematopoéticas , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Imunidade Humoral , Imunoglobulina G , SARS-CoV-2 , Sobreviventes , Linfócitos T , Vacinação
15.
Clin Case Rep ; 10(2): e05400, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35223007

RESUMO

Pregnancy might impact immunity after SARS-CoV-2 infection and/or vaccination. We describe the first case of reinfection with SARS-CoV-2 during a pregnancy. While the mother lacked detectable antibodies 2 months after the first infection, both mother and baby had IgG antibodies at delivery. Infection did not cause any adverse pregnancy outcome.

16.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35064076

RESUMO

Adenosine deaminases acting on RNA (ADAR) are RNA-editing enzymes that may restrict viral infection. We have utilized deep sequencing to determine adenosine to guanine (A→G) mutations, signifying ADAR activity, in clinical samples retrieved from 93 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients in the early phase of the COVID-19 pandemic. A→G mutations were detected in 0.035% (median) of RNA residues and were predominantly nonsynonymous. These mutations were rarely detected in the major viral population but were abundant in minor viral populations in which A→G was more prevalent than any other mutation (P < 0.001). The A→G substitutions accumulated in the spike protein gene at positions corresponding to amino acids 505 to 510 in the receptor binding motif and at amino acids 650 to 655. The frequency of A→G mutations in minor viral populations was significantly associated with low viral load (P < 0.001). We additionally analyzed A→G mutations in 288,247 SARS-CoV-2 major (consensus) sequences representing the dominant viral population. The A→G mutations observed in minor viral populations in the initial patient cohort were increasingly detected in European consensus sequences between March and June 2020 (P < 0.001) followed by a decline of these mutations in autumn and early winter (P < 0.001). We propose that ADAR-induced deamination of RNA is a significant source of mutated SARS-CoV-2 and hypothesize that the degree of RNA deamination may determine or reflect viral fitness and infectivity.


Assuntos
Adenosina Desaminase/genética , COVID-19/epidemiologia , Mutação Puntual , Edição de RNA , RNA Viral/genética , Proteínas de Ligação a RNA/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Adenosina/metabolismo , Adenosina Desaminase/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Substituição de Aminoácidos , COVID-19/genética , COVID-19/transmissão , COVID-19/virologia , Desaminação , Feminino , Aptidão Genética , Genoma Viral , Guanina/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Masculino , Pessoa de Meia-Idade , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Transdução de Sinais , Glicoproteína da Espícula de Coronavírus/metabolismo , Suécia/epidemiologia , Carga Viral , Virulência
17.
J Infect Dis ; 226(2): 208-216, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35022764

RESUMO

BACKGROUND: Waning of immunoglobulin G (IgG) antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) complicates the diagnosis of past infection. The durability of T-cell memory against SARS-CoV-2 remains unclear, and most current T-cell protocols are unsuited for large-scale automation. METHODS: Whole-blood samples from 31 patients with verified past coronavirus disease 2019 (COVID-19) and 46 controls, of whom 40 received COVID-19 vaccine, were stimulated with peptides spanning the nucleocapsid (NC) or spike 1 (S1) regions of SARS-CoV-2 and analyzed for interferon γ in supernatant plasma. Diagnostic accuracy of these assays was evaluated against serum anti-NC and anti-receptor-binding domain S1-IgG. RESULTS: Induction of interferon γ in whole blood by NC or S1 peptides diagnosed past COVID-19 with high accuracy (area under the receiver operating characteristic curve, 0.93 and 0.95, respectively). In accordance with previous studies, NC-IgG levels rapidly waned with only 5 of 17 patients (29%) remaining seropositive >180 days after infection. By contrast, NC peptide-induced T-cell memory responses remained in 13 of 17 study participants (76%) >180 days after infection (P = .01 for comparison with NC-IgG; McNemar test). After 2 vaccine doses, all 18 donors exhibited S1-specific T-cell memory. CONCLUSIONS: Cytokine release assays for the monitoring of T-cell memory in whole blood may be useful for evaluating complications following unverified past COVID-19 and for long-term assessment of vaccine-induced T-cell immunity. CLINICAL TRIALS REGISTRATION: EudraCT 2021-000349-42.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Vacinas contra COVID-19 , Humanos , Imunoglobulina G , Interferon gama , Glicoproteína da Espícula de Coronavírus , Linfócitos T
18.
J Infect Dis ; 226(6): 1036-1040, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34534318

RESUMO

Hepatitis B virus (HBV) DNA and RNA were quantified by digital PCR assays in 20-30 tissue pieces from each of 4 liver explants with cirrhosis caused by HBV. The within-patient variability of HBV RNA levels between pieces was up to a 1000-fold. Core RNA and S RNA levels were similar and correlated strongly when replication was high, supporting that transcription was from covalently closed circular DNA (cccDNA). By contrast, enhanced expression of S RNA relative to cccDNA and core RNA in patients with medium-high or low replication supports that HBV surface antigen (HBsAg) can be expressed mainly from integrated HBV DNA in such patients.


Assuntos
Hepatite B Crônica , Hepatite B , Antígenos de Superfície , DNA Circular/genética , DNA Viral/análise , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/genética , Humanos , Fígado , RNA Viral/análise
19.
J Virol Methods ; 299: 114315, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34648822

RESUMO

BACKGROUND: Hepatitis B virus (HBV) infection is worldwide a major cause of liver cirrhosis and hepatocellular carcinoma. Thousands of years ago, several HBV genotypes (A-I) evolved and have, as a result of human migration, become globally disseminated. Sequencing of HBV is used for genotyping, and investigation of outbreaks or of antiviral resistance. The present study describes a simplified deep sequencing of the whole HBV genome. METHODS: Sequencing by Ion Torrent was evaluated and its performance compared with Sanger sequencing on clinical samples. RESULTS: Amplification of overlapping segments spanning the entire HBV genome was successful at HBV DNA levels in serum as low as 100 IU/mL. The use of primers carrying adapter tags generated libraries without the need for fragmentation and ligation steps, and inclusion of barcode sequences allowed parallel analysis of multiple samples. A streamlined bioinformatic platform generated consensus sequences and superior mutation assessment as compared with Sanger sequencing, with which there was a 99.8 % average agreement. CONCLUSION: Deep sequencing of the whole HBV genome by using PCR primers tagged with adapters that prepare overlapping amplicons for Ion Torrent analysis was efficient and accurate.


Assuntos
Hepatite B Crônica , Hepatite B , Neoplasias Hepáticas , DNA Viral/genética , Farmacorresistência Viral/genética , Genótipo , Vírus da Hepatite B/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos
20.
Infect Control Hosp Epidemiol ; 43(10): 1403-1407, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34496989

RESUMO

OBJECTIVE: Effective infection prevention and control (IPC) measures are key for protecting patients from nosocomial infections and require knowledge of transmission mechanisms in different settings. We performed a detailed outbreak analysis of the transmission and outcome of coronavirus disease 2019 (COVID-19) in a geriatric ward by combining whole-genome sequencing (WGS) with epidemiological data. DESIGN: Retrospective cohort study. SETTING: Tertiary-care hospital. PARTICIPANTS: Patients and healthcare workers (HCWs) from the ward with a nasopharyngeal sample (NPS) positive for severe acute respiratory coronavirus virus 2 (SARS-CoV-2) RNA during the outbreak period. METHODS: Patient data regarding clinical characteristics, exposure and outcome were collected retrospectively from medical records. Stored NPSs from 32 patients and 15 HCWs were selected for WGS and phylogenetic analysis. RESULTS: The median patient age was 84 years and 17 (53%) of 32 were male. Also, 14 patients (44%) died within 30 days of sampling. Viral loads were significantly higher among the deceased. WGS was successful in 28 (88%) of 32 patient samples and 14 (93%) of 15 HCW samples. Moreover, 3 separate viral clades were identified: 1 clade and 2 subclades among both patient and HCW samples. Integrated epidemiological and genetic analyses revealed 6 probable transmission events between patients and supported hospital-acquired COVID-19 among 25 of 32 patients. CONCLUSIONS: WGS provided an insight into the outbreak dynamics and true extent of nosocomial COVID-19. The extensive transmission between patients and HCWs indicated that current IPC measures were insufficient. We recommend increased use of WGS in outbreak investigations to identify otherwise unknown transmission links and to evaluate IPC measures.


Assuntos
COVID-19 , Infecção Hospitalar , Viroses , Humanos , Masculino , Idoso , Idoso de 80 Anos ou mais , Feminino , SARS-CoV-2/genética , COVID-19/epidemiologia , Estudos Retrospectivos , Infecção Hospitalar/prevenção & controle , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Filogenia , Controle de Infecções , Pessoal de Saúde , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...