Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cyst Fibros ; 20(1): 173-182, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32978064

RESUMO

BACKGROUND: Bacterial colonization in cystic fibrosis (CF) lungs has been directly associated to the loss of CFTR function, and/or secondarily linked to repetitive cycles of chronic inflammation/infection. We hypothesized that altered molecular properties of mucins could contribute to this process. METHODS: Newborn CFTR+/+ and CFTR-/- were sacrificed before and 6 h after inoculation with luminescent Pseudomonas aeruginosa into the tracheal carina. Tracheal mucosa and the bronchoalveolar lavage (BAL) fluid were collected to determine the level of mucin O-glycosylation, bacteria binding to mucins and the airways transcriptome. Disturbances in mucociliary transport were determined by ex-vivo imaging of luminescent Pseudomonas aeruginosa. RESULTS: We provide evidence of an increased sialylation of CF airway mucins and impaired mucociliary transport that occur before the onset of inflammation. Hypersialylation of mucins was reproduced on tracheal explants from non CF animals treated with GlyH101, an inhibitor of CFTR channel activity, indicating a causal relationship between the absence of CFTR expression and the sialylation of mucins. This increased sialylation was correlated to an increased adherence of P. aeruginosa to mucins. In vivo infection of newborn CF piglets by live luminescent P. aeruginosa demonstrated an impairment of mucociliary transport of this bacterium, with no evidence of pre-existing inflammation. CONCLUSIONS: Our results document for the first time in a well-defined CF animal model modifications that affect the O-glycan chains of mucins. These alterations precede infection and inflammation of airway tissues, and provide a favorable context for microbial development in CF lung that hallmarks this disease.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Fibrose Cística/metabolismo , Fibrose Cística/fisiopatologia , Mucinas/metabolismo , Depuração Mucociliar , Mucosa Respiratória/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Glicosilação , Masculino , Pseudomonas aeruginosa , Mucosa Respiratória/microbiologia , Suínos , Traqueia
2.
Front Physiol ; 9: 980, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30087622

RESUMO

Mucus is a major component of the intestinal barrier involved both in the protection of the host and the fitness of commensals of the gut. Streptococcus thermophilus is consumed world-wide in fermented dairy products and is also recognized as a probiotic, as its consumption is associated with improved lactose digestion. We determined the overall effect of S. thermophilus on the mucus by evaluating its ability to adhere, degrade, modify, or induce the production of mucus and/or mucins. Adhesion was analyzed in vitro using two types of mucins (from pig or human biopsies) and mucus-producing intestinal HT29-MTX cells. The induction of mucus was characterized in two different rodent models, in which S. thermophilus is the unique bacterial species in the digestive tract or transited as a sub-dominant bacterium through a complex microbiota. S. thermophilus LMD-9 and LMG18311 strains did not grow in sugars used to form mucins as the sole carbon source and displayed weak binding to mucus/mucins relative to the highly adhesive TIL448 Lactococcus lactis. The presence of S. thermophilus as the unique bacteria in the digestive tract of gnotobiotic rats led to accumulation of lactate and increased the number of Alcian-Blue positive goblet cells and the amount of the mucus-inducer KLF4 transcription factor. Lactate significantly increased KLF4 protein levels in HT29-MTX cells. Introduction of S. thermophilusvia transit as a sub-dominant bacterium (103 CFU/g feces) in a complex endogenous microbiota resulted in a slight increase in lactate levels in the digestive tract, no induction of overall mucus production, and moderate induction of sulfated mucin production. We thus show that although S. thermophilus is a poor mucus-adhesive bacterium, it can promote mucus pathway at least in part by producing lactate in the digestive tract.

3.
Microorganisms ; 6(2)2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844291

RESUMO

Mucus is the habitat for the microorganisms, bacteria and yeast that form the commensal flora. Mucins, the main macromolecules of mucus, and more specifically, the glycans that cover them, play essential roles in microbial gastrointestinal colonization. Probiotics and pathogens must also colonize mucus to have lasting positive or deleterious effects. The question of which mucin-harboured glycan motifs favour the adhesion of specific microorganisms remains very poorly studied. In the current study, a simple test based on the detection of fluorescent-labeled microorganisms raised against microgram amounts of mucins spotted on nitrocellulose was developed. The adhesion of various probiotic, commensal and pathogenic microorganisms was evaluated on a panel of human purified gastrointestinal mucins and compared with that of commercially available pig gastric mucins (PGM) and of mucins secreted by the colonic cancer cell line HT29-MTX. The latter two proved to be very poor indicators of adhesion capacity on intestinal mucins. Our results show that the nature of the sialylated cores of O-glycans, determined by MALDI MS-MS analysis, potentially enables sialic acid residues to modulate the adhesion of microorganisms either positively or negatively. Other identified factors affecting the adhesion propensity were O-glycan core types and the presence of blood group motifs. This test should help to select probiotics with enhanced adhesion capabilities as well as deciphering the role of specific mucin glycotopes on microbial adhesion.

4.
Biochem Soc Trans ; 45(2): 389-399, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28408479

RESUMO

The gastrointestinal mucosal surface is the primary interface between internal host tissues and the vast microbiota. Mucins, key components of mucus, are high-molecular-weight glycoproteins characterized by the presence of many O-linked oligosaccharides to the core polypeptide. They play many biological functions, helping to maintain cellular homeostasis and to establish symbiotic relationships with complex microbiota. Mucin O-glycans exhibit a huge variety of peripheral sequences implicated in the binding of bacteria to the mucosal tissues, thereby playing a key role in the selection of specific species and in the tissue tropism displayed by commensal and pathogenic bacteria. Bacteria have evolved numerous strategies to colonize host mucosae, and among these are modulation of expression of cell surface adhesins which allow bacteria to bind to mucins. However, despite well structurally characterized adhesins and lectins, information on the nature and structure of oligosaccharides recognized by bacteria is still disparate. This review summarizes the current knowledge on the structure of epithelial mucin O-glycans and the interaction between host and commensal or pathogenic bacteria mediated by mucins.


Assuntos
Adesinas Bacterianas/metabolismo , Trato Gastrointestinal/microbiologia , Mucinas/química , Mucinas/metabolismo , Aderência Bacteriana , Fenômenos Fisiológicos Bacterianos , Trato Gastrointestinal/metabolismo , Homeostase , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Ligação Proteica
5.
Front Oncol ; 5: 217, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26500890

RESUMO

Although colorectal cancer is a preventable and curable disease if early stage tumors are removed, it still represents the second cause of cancer-related death worldwide. Surgical resection is the only curative treatment but once operated the patient is either subjected to adjuvant chemotherapy or not, depending on the invasiveness of the cancer and risks of recurrence. In this context, we investigated, by mass spectrometry (MS), alterations in the repertoire of glycosylation of mucins from colorectal tumors of various stages, grades, and recurrence status. Tumors were also compared with their counterparts in resection margins from the same patients and with healthy controls. The obtained data showed an important decrease in the level of expression of sialylated core 3-based O-glycans in tumors correlated with an increase in sialylated core 1 structures. No correlation was established between stages of the tumor samples and mucin O-glycosylation. However, with the notable exception of sialyl Tn antigens, tumors with recurrence presented a milder alteration of glycosylation profile than tumors without recurrence. These results suggest that mucin O-glycans from tumors with recurrence might mimic a healthier physiological situation, hence deceiving the immune defense system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...