Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Nat Ecol Evol ; 5(11): 1499-1509, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34429536

RESUMO

To meet the ambitious objectives of biodiversity and climate conventions, the international community requires clarity on how these objectives can be operationalized spatially and how multiple targets can be pursued concurrently. To support goal setting and the implementation of international strategies and action plans, spatial guidance is needed to identify which land areas have the potential to generate the greatest synergies between conserving biodiversity and nature's contributions to people. Here we present results from a joint optimization that minimizes the number of threatened species, maximizes carbon retention and water quality regulation, and ranks terrestrial conservation priorities globally. We found that selecting the top-ranked 30% and 50% of terrestrial land area would conserve respectively 60.7% and 85.3% of the estimated total carbon stock and 66% and 89.8% of all clean water, in addition to meeting conservation targets for 57.9% and 79% of all species considered. Our data and prioritization further suggest that adequately conserving all species considered (vertebrates and plants) would require giving conservation attention to ~70% of the terrestrial land surface. If priority was given to biodiversity only, managing 30% of optimally located land area for conservation may be sufficient to meet conservation targets for 81.3% of the terrestrial plant and vertebrate species considered. Our results provide a global assessment of where land could be optimally managed for conservation. We discuss how such a spatial prioritization framework can support the implementation of the biodiversity and climate conventions.


Assuntos
Carbono , Conservação dos Recursos Naturais , Animais , Biodiversidade , Espécies em Perigo de Extinção , Humanos , Vertebrados
4.
Philos Trans R Soc Lond B Biol Sci ; 375(1794): 20190117, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31983335

RESUMO

Expanding the network of protected areas is a core strategy for conserving biodiversity in the face of climate change. Here, we explore the impacts on reserve network cost and configuration associated with planning for climate change in the USA using networks that prioritize areas projected to be climatically suitable for 1460 species both today and into the future, climatic refugia and areas likely to facilitate climate-driven species movements. For 14% of the species, networks of sites selected solely to protect areas currently climatically suitable failed to provide climatically suitable habitat in the future. Protecting sites climatically suitable for species today and in the future significantly changed the distribution of priority sites across the USA-increasing relative protection in the northeast, northwest and central USA. Protecting areas projected to retain their climatic suitability for species cost 59% more than solely protecting currently suitable areas. Including all climatic refugia and 20% of areas that facilitate climate-driven movements increased the cost by another 18%. Our results indicate that protecting some types of climatic refugia may be a relatively inexpensive adaptation strategy. Moreover, although addressing climate change in conservation plans will have significant implications for the configuration of networks, the increased cost of doing so may be relatively modest. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.


Assuntos
Distribuição Animal , Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais/métodos , Parques Recreativos/economia , Dispersão Vegetal , Refúgio de Vida Selvagem , Mudança Climática/economia , Conservação dos Recursos Naturais/economia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...