Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 5(5): 875-81, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-26274081

RESUMO

Hydrodynamic instabilities at the interface between two partially miscible liquids impact numerous applications, including CO2 sequestration in saline aquifers. We introduce here a new laboratory-scale model system on which buoyancy- and Marangoni-driven convective instabilities of such partially miscible two-layer systems can easily be studied. This system consists of the stratification of a pure alkyl formate on top of a denser aqueous solution in the gravitational field. A rich spectrum of convective dynamics is obtained upon partial dissolution of the ester into the water followed by its hydrolysis. The properties of the convective patterns are controlled by the miscibility of the ester in water, the feedback of the dissolved species on its own miscibility, as well as the reactivity of given chemicals in the aqueous solution with the solubilized ester.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(1 Pt 2): 015304, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22400618

RESUMO

An experimental demonstration of reaction-driven viscous fingering developing when a more viscous solution of a reactant A displaces a less viscous miscible solution of another reactant B is presented. In the absence of reaction, such a displacement of one fluid by another less mobile one is classically stable. However, a simple A+B→C reaction can destabilize this interface if the product C is either more or less viscous than both reactant solutions. Using the pH dependence of the viscosity of some polymer solutions, we provide experimental evidence of both scenarios. We demonstrate quantitatively that reactive viscous fingering results from the buildup in time of nonmonotonic viscosity profiles with patterns behind or ahead of the reaction zone, depending on whether the product is more or less viscous than the reactants. The experimental findings are backed up by numerical simulations.

3.
Phys Chem Chem Phys ; 13(38): 17295-303, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21881652

RESUMO

Buoyancy-driven hydrodynamic instabilities of acid-base fronts are studied both experimentally and theoretically in the case where an aqueous solution of a strong acid is put above a denser aqueous solution of a color indicator in the gravity field. The neutralization reaction between the acid and the color indicator as well as their differential diffusion modifies the initially stable density profile in the system and can trigger convective motions both above and below the initial contact line. The type of patterns observed as well as their wavelength and the speed of the reaction front are shown to depend on the value of the initial concentrations of the acid and of the color indicator and on their ratio. A reaction-diffusion model based on charge balances and ion pair mobility explains how the instability scenarios change when the concentration of the reactants are varied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...