Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900131

RESUMO

Growing evidence shows that the lung is an organ prone to injury by diabetes mellitus. However, the molecular mechanisms of these pulmonary complications have not yet been characterized comprehensively. To systematically study the effects of insulin deficiency and hyperglycaemia on the lung, we combined proteomics and lipidomics with quantitative histomorphological analyses to compare lung tissue samples from a clinically relevant pig model for mutant INS gene induced diabetes of youth (MIDY) with samples from wild-type (WT) littermate controls. Among others, the level of pulmonary surfactant-associated protein A (SFTPA1), a biomarker of lung injury, was moderately elevated. Furthermore, key proteins related to humoral immune response and extracellular matrix (ECM) organization were significantly altered in abundance. Importantly, a lipoxygenase pathway was dysregulated as indicated by a 2.5-fold reduction of polyunsaturated fatty acid lipoxygenase ALOX15 levels, associated with corresponding changes in the levels of lipids influenced by this enzyme. Our multi-omics study points to an involvement of reduced ALOX15 levels and an associated lack of eicosanoid switching as mechanisms contributing to a proinflammatory milieu in the lungs of subjects suffering from diabetes mellitus.

2.
Mol Metab ; 75: 101768, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37414142

RESUMO

OBJECTIVE: To gain mechanistic insights into adverse effects of maternal hyperglycemia on the liver of neonates, we performed a multi-omics analysis of liver tissue from piglets developed in genetically diabetic (mutant INS gene induced diabetes of youth; MIDY) or wild-type (WT) pigs. METHODS: Proteome, metabolome and lipidome profiles of liver and clinical parameters of serum samples from 3-day-old WT piglets (n = 9) born to MIDY mothers (PHG) were compared with those of WT piglets (n = 10) born to normoglycemic mothers (PNG). Furthermore, protein-protein interaction network analysis was used to reveal highly interacting proteins that participate in the same molecular mechanisms and to relate these mechanisms with human pathology. RESULTS: Hepatocytes of PHG displayed pronounced lipid droplet accumulation, although the abundances of central lipogenic enzymes such as fatty acid-synthase (FASN) were decreased. Additionally, circulating triglyceride (TG) levels were reduced as a trend. Serum levels of non-esterified free fatty acids (NEFA) were elevated in PHG, potentially stimulating hepatic gluconeogenesis. This is supported by elevated hepatic phosphoenolpyruvate carboxykinase (PCK1) and circulating alanine transaminase (ALT) levels. Even though targeted metabolomics showed strongly elevated phosphatidylcholine (PC) levels, the abundances of multiple key enzymes involved in major PC synthesis pathways - most prominently those from the Kennedy pathway - were paradoxically reduced in PHG liver. Conversely, enzymes involved in PC excretion and breakdown such as PC-specific translocase ATP-binding cassette 4 (ABCB4) and phospholipase A2 were increased in abundance. CONCLUSIONS: Our study indicates that maternal hyperglycemia without confounding obesity induces profound molecular changes in the liver of neonatal offspring. In particular, we found evidence for stimulated gluconeogenesis and hepatic lipid accumulation independent of de novo lipogenesis. Reduced levels of PC biosynthesis enzymes and increased levels of proteins involved in PC translocation or breakdown may represent counter-regulatory mechanisms to maternally elevated PC levels. Our comprehensive multi-omics dataset provides a valuable resource for future meta-analysis studies focusing on liver metabolism in newborns from diabetic mothers.


Assuntos
Diabetes Gestacional , Hiperglicemia , Recém-Nascido , Gravidez , Feminino , Animais , Humanos , Suínos , Adolescente , Glucose/metabolismo , Metabolismo dos Lipídeos , Aminoácidos/metabolismo , Multiômica , Fígado/metabolismo , Hiperglicemia/metabolismo
4.
Front Immunol ; 14: 1157373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37081886

RESUMO

Allergic inflammation of the airways such as allergic asthma is a major health problem with growing incidence world-wide. One cardinal feature in severe type 2-dominated airway inflammation is the release of lipid mediators of the eicosanoid family that can either promote or dampen allergic inflammation. Macrophages are key producers of prostaglandins and leukotrienes which play diverse roles in allergic airway inflammation and thus require tight control. Using RNA- and ATAC-sequencing, liquid chromatography coupled to mass spectrometry (LC-MS/MS), enzyme immunoassays (EIA), gene expression analysis and in vivo models, we show that the aryl hydrocarbon receptor (AhR) contributes to this control via transcriptional regulation of lipid mediator synthesis enzymes in bone marrow-derived as well as in primary alveolar macrophages. In the absence or inhibition of AhR activity, multiple genes of both the prostaglandin and the leukotriene pathway were downregulated, resulting in lower synthesis of prostanoids, such as prostaglandin E2 (PGE2), and cysteinyl leukotrienes, e.g., Leukotriene C4 (LTC4). These AhR-dependent genes include PTGS1 encoding for the enzyme cyclooxygenase 1 (COX1) and ALOX5 encoding for the arachidonate 5-lipoxygenase (5-LO) both of which major upstream regulators of the prostanoid and leukotriene pathway, respectively. This regulation is independent of the activation stimulus and partially also detectable in unstimulated macrophages suggesting an important role of basal AhR activity for eicosanoid production in steady state macrophages. Lastly, we demonstrate that AhR deficiency in hematopoietic but not epithelial cells aggravates house dust mite induced allergic airway inflammation. These results suggest an essential role for AhR-dependent eicosanoid regulation in macrophages during homeostasis and inflammation.


Assuntos
Macrófagos Alveolares , Receptores de Hidrocarboneto Arílico , Humanos , Cromatografia Líquida , Dinoprostona , Eicosanoides/metabolismo , Inflamação/metabolismo , Leucotrienos , Macrófagos Alveolares/metabolismo , Prostaglandinas , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Espectrometria de Massas em Tandem
5.
Adv Sci (Weinh) ; 9(29): e2104291, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36031387

RESUMO

Aberrant energy metabolism and cell cycle regulation both critically contribute to malignant cell growth and both processes represent targets for anticancer therapy. It is shown here that depletion of the AAA+-ATPase thyroid hormone receptor interacting protein 13 (Trip13) results in mitotic cell death through a combined mechanism linking lipid metabolism to aberrant mitosis. Diminished Trip13 levels in hepatocellular carcinoma cells result in insulin-receptor-/Akt-pathway-dependent accumulation of lipid droplets, which act as functional acentriolar microtubule organizing centers disturbing mitotic spindle polarity. Specifically, the lipid-droplet-coating protein perilipin 2 (Plin2) is required for multipolar spindle formation, induction of DNA damage, and mitotic cell death. Plin2 expression in different tumor cells confers susceptibility to cell death induced by Trip13 depletion as well as treatment with paclitaxel, a spindle-interfering drug commonly used against different cancers. Thus, assessment of Plin2 levels enables the stratification of tumor responsiveness to mitosis-targeting drugs, including clinically approved paclitaxel and Trip13 inhibitors currently under development.


Assuntos
Insulinas , Neoplasias Hepáticas , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Morte Celular , Humanos , Insulinas/metabolismo , Lipídeos , Proteínas Mad2/metabolismo , Paclitaxel/farmacologia , Perilipina-2 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo
6.
Anal Chem ; 93(49): 16369-16378, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34859676

RESUMO

Modern biomarker and translational research as well as personalized health care studies rely heavily on powerful omics' technologies, including metabolomics and lipidomics. However, to translate metabolomics and lipidomics discoveries into a high-throughput clinical setting, standardization is of utmost importance. Here, we compared and benchmarked a quantitative lipidomics platform. The employed Lipidyzer platform is based on lipid class separation by means of differential mobility spectrometry with subsequent multiple reaction monitoring. Quantitation is achieved by the use of 54 deuterated internal standards and an automated informatics approach. We investigated the platform performance across nine laboratories using NIST SRM 1950-Metabolites in Frozen Human Plasma, and three NIST Candidate Reference Materials 8231-Frozen Human Plasma Suite for Metabolomics (high triglyceride, diabetic, and African-American plasma). In addition, we comparatively analyzed 59 plasma samples from individuals with familial hypercholesterolemia from a clinical cohort study. We provide evidence that the more practical methyl-tert-butyl ether extraction outperforms the classic Bligh and Dyer approach and compare our results with two previously published ring trials. In summary, we present standardized lipidomics protocols, allowing for the highly reproducible analysis of several hundred human plasma lipids, and present detailed molecular information for potentially disease relevant and ethnicity-related materials.


Assuntos
Laboratórios , Lipidômica , Estudos de Coortes , Humanos , Padrões de Referência , Análise Espectral
7.
J Cachexia Sarcopenia Muscle ; 11(6): 1459-1475, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33090732

RESUMO

BACKGROUND: Cancer cachexia (CCx) is a multifactorial energy-wasting syndrome reducing the efficiency of anti-cancer therapies, quality of life, and survival of cancer patients. In the past years, most studies focused on the identification of tumour and host-derived proteins contributing to CCx. However, there is still a lack of studies addressing the changes in bioactive lipids. The aim of this study was to identify specific lipid species as a hallmark of CCx by performing a broad range lipid analysis of plasma from well-established CCx mouse models as well as cachectic and weight stable cancer patients. METHODS: Plasma from non-cachectic (PBS-injected mice, NC26 tumour-bearing mice), pre-cachectic and cachectic mice (C26 and LLC tumour-bearing mice, ApcMin/+ mutant mice), and plasma from weight stable and cachectic patients with gastrointestinal cancer, were analysed using the Lipidyzer™ platform. In total, 13 lipid classes and more than 1100 lipid species, including sphingolipids, neutral and polar glycerolipids, were covered by the analysis. Correlation analysis between specific lipid species and readouts of CCx were performed. Lipidomics data were confirmed by gene expression analysis of metabolic organs to analyse enzymes involved in sphingolipid synthesis and degradation. RESULTS: A decrease in several lysophosphatidylcholine (LPC) species and an increase in numerous sphingolipids including sphingomyelins (SMs), ceramides (CERs), hexosyl-ceramides (HCERs) and lactosyl-ceramides (LCERs), were mutual features of CCx in both mice and cancer patients. Notably, sphingolipid levels gradually increased during cachexia development. Key enzymes involved in ceramide synthesis were elevated in liver but not in adipose, muscle, or tumour tissues, suggesting that ceramide turnover in the liver is a major contributor to elevated sphingolipid levels in CCx. LPC(16:1), LPC(20:3), SM(16:0), SM(24:1), CER(16:0), CER(24:1), HCER(16:0), and HCER(24:1) were the most consistently affected lipid species between mice and humans and correlated negatively (LPCs) or positively (SMs, CERs and HCERs) with the severity of body weight loss. CONCLUSIONS: High levels of sphingolipids, specifically ceramides and modified ceramides, are a defining feature of murine and human CCx and may contribute to tissue wasting and skeletal muscle atrophy through the inhibition of anabolic signals. The progressive increase in sphingolipids during cachexia development supports their potential as early biomarkers for CCx.


Assuntos
Caquexia , Ceramidas , Neoplasias , Animais , Caquexia/etiologia , Ceramidas/metabolismo , Humanos , Camundongos , Atrofia Muscular , Neoplasias/complicações , Qualidade de Vida
8.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(9): 1247-1257, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31136841

RESUMO

Bis(Monoacylglycero) Phosphate (BMP) is a unique phospholipid localized in late endosomes, a critical cellular compartment in low density lipoprotein (LDL)-cholesterol metabolism. In previous work, we demonstrated the important role of BMP in the regulation of macrophage cholesterol homeostasis. BMP exerts a protective role against the pro-apoptotic effect of oxidized LDL (oxLDL) by reducing the production of deleterious oxysterols. As the intracellular sterol traffic in macrophages is in part regulated by oxysterol binding protein (OSBP) and OSBP-related proteins (ORPs), we investigated the role of ORP11, localized at the Golgi-late endosomes interface, in the BMP-mediated protection from oxLDL/oxysterol cytotoxicity. Stably silencing of ORP11 in mouse RAW264.7 macrophages via a shRNA lentiviruses system had no effect on BMP production. However, ORP11 knockdown abrogated the protective action of BMP against oxLDL induced apoptosis. In oxLDL treated control cells, BMP enrichment was associated with reduced generation of 7-oxysterols, while these oxysterol species were abundant in the ORP11 knock-down cells. Of note, BMP enrichment in ORP11 knock-down cells was associated with a drastic increase in free cholesterol and linked to a decrease of cholesterol efflux. The expression of ATP-binding cassette-transporter G1 (ABCG1) was also reduced in the ORP11 knock-down cells. These observations demonstrate a cooperative function of OPR11 and BMP, in intracellular cholesterol trafficking in cultured macrophages. We suggest that BMP favors the egress of cholesterol from late endosomes via an ORP11-dependent mechanism, resulting in a reduced production of cytotoxic 7-oxysterols.


Assuntos
Lipoproteínas LDL/metabolismo , Lisofosfolipídeos/metabolismo , Macrófagos/metabolismo , Monoglicerídeos/metabolismo , Receptores de Esteroides/metabolismo , Animais , Apoptose , Colesterol/metabolismo , Humanos , Camundongos , Células RAW 264.7
9.
Int J Mol Sci ; 19(11)2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30366412

RESUMO

Background: In Acute Myeloid Leukemia (AML), a complete response to chemotherapy is usually obtained after conventional chemotherapy but overall patient survival is poor due to highly frequent relapses. As opposed to chronic myeloid leukemia, B lymphoma or multiple myeloma, AML is one of the rare malignant hemopathies the therapy of which has not significantly improved during the past 30 years despite intense research efforts. One promising approach is to determine metabolic dependencies in AML cells. Moreover, two key metabolic enzymes, isocitrate dehydrogenases (IDH1/2), are mutated in more than 15% of AML patient, reinforcing the interest in studying metabolic reprogramming, in particular in this subgroup of patients. Methods: Using a multi-omics approach combining proteomics, lipidomics, and isotopic profiling of [U-13C] glucose and [U-13C] glutamine cultures with more classical biochemical analyses, we studied the impact of the IDH1 R132H mutation in AML cells on lipid biosynthesis. Results: Global proteomic and lipidomic approaches showed a dysregulation of lipid metabolism, especially an increase of phosphatidylinositol, sphingolipids (especially few species of ceramide, sphingosine, and sphinganine), free cholesterol and monounsaturated fatty acids in IDH1 mutant cells. Isotopic profiling of fatty acids revealed that higher lipid anabolism in IDH1 mutant cells corroborated with an increase in lipogenesis fluxes. Conclusions: This integrative approach was efficient to gain insight into metabolism and dynamics of lipid species in leukemic cells. Therefore, we have determined that lipid anabolism is strongly reprogrammed in IDH1 mutant AML cells with a crucial dysregulation of fatty acid metabolism and fluxes, both being mediated by 2-HG (2-Hydroxyglutarate) production.


Assuntos
Ácidos Graxos/metabolismo , Marcação por Isótopo/métodos , Leucemia Mieloide Aguda/metabolismo , Metabolismo dos Lipídeos/fisiologia , Glutaratos/metabolismo , Células HL-60 , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Metabolismo dos Lipídeos/genética , Mutação/genética
10.
Methods Mol Biol ; 1730: 267-275, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29363080

RESUMO

Oxysterols are oxygenated derivatives of cholesterol formed in the human body or ingested in the diet. By modulating the activity of many proteins (for instance, liver X receptors, oxysterol-binding proteins, some ATP-binding cassette transporters), oxysterols can affect many cellular functions and influence various physiological processes (e.g., cholesterol metabolism, membrane fluidity regulation, intracellular signaling pathways). Due to their crucial role, it is important to be able to quantify them in pathological conditions. The method described here permits to measure the content of oxysterol in plasma, cell, or media using GC-MS.


Assuntos
Oxisteróis/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Oxisteróis/sangue , Extração em Fase Sólida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...