Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Cell Rep ; 43(5): 114156, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38687642

RESUMO

The maintenance of antigen-specific CD8+ T cells underlies the efficacy of vaccines and immunotherapies. Pathways contributing to CD8+ T cell loss are not completely understood. Uncovering the pathways underlying the limited persistence of CD8+ T cells would be of significant benefit for developing novel strategies of promoting T cell persistence. Here, we demonstrate that murine CD8+ T cells experience endoplasmic reticulum (ER) stress following activation and that the ER-associated degradation (ERAD) adapter Sel1L is induced in activated CD8+ T cells. Sel1L loss limits CD8+ T cell function and memory formation following acute viral infection. Mechanistically, Sel1L is required for optimal bioenergetics and c-Myc expression. Finally, we demonstrate that human CD8+ T cells experience ER stress upon activation and that ER stress is negatively associated with improved T cell functionality in T cell-redirecting therapies. Together, these results demonstrate that ER stress and ERAD are important regulators of T cell function and persistence.


Assuntos
Linfócitos T CD8-Positivos , Estresse do Retículo Endoplasmático , Degradação Associada com o Retículo Endoplasmático , Memória Imunológica , Animais , Humanos , Camundongos , Doença Aguda , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Coriomeningite Linfocítica/patologia , Camundongos Endogâmicos C57BL , Proteínas , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Masculino , Feminino
2.
bioRxiv ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38328232

RESUMO

Photosensitivity is observed in numerous autoimmune diseases and drives poor quality of life and disease flares. Elevated epidermal type I interferon (IFN) production primes for photosensitivity and enhanced inflammation, but the substrates that sustain and amplify this cycle remain undefined. Here, we show that IFN-induced Z-DNA binding protein 1 (ZBP1) stabilizes ultraviolet (UV)B-induced cytosolic Z-DNA derived from oxidized mitochondrial DNA. ZBP1 is significantly upregulated in the epidermis of adult and pediatric patients with autoimmune photosensitivity. Strikingly, lupus keratinocytes accumulate extensive cytosolic Z-DNA after UVB, and transfection of keratinocytes with Z-DNA results in stronger IFN production through cGAS-STING activation compared to B-DNA. ZBP1 knockdown abrogates UV-induced IFN responses, whereas overexpression results in a lupus-like phenotype with spontaneous Z-DNA accumulation and IFN production. Our results highlight Z-DNA and ZBP1 as critical mediators for UVB-induced inflammation and uncover how type I IFNs prime for cutaneous inflammation in photosensitivity.

3.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873171

RESUMO

Infection by intracellular pathogens can trigger activation of the IRE1α branch of the unfolded protein response (UPR), which then modulates innate immunity and infection outcomes during bacterial or viral infection. However, the mechanisms by which infection activates IRE1α have not been fully elucidated. While recognition of microbe-associated molecular patterns can activate IRE1α, it is unclear whether this depends on the canonical role of IRE1α in detecting misfolded proteins. Here, we report that Candida albicans infection of macrophages results in IRE1α activation through C-type lectin receptor signaling, reinforcing a role for IRE1α as a central regulator of host responses to infection by a broad range of pathogens. However, IRE1α activation was not preceded by protein misfolding in response to either C. albicans infection or lipopolysaccharide treatment, implicating a non-canonical mode of IRE1α activation after recognition of microbial patterns. Investigation of the phenotypic consequences of IRE1α activation in macrophage antimicrobial responses revealed that IRE1α activity enhances the fungicidal activity of macrophages. Macrophages lacking IRE1α activity displayed inefficient phagolysosomal fusion, enabling C. albicans to evade fungal killing and escape the phagosome. Together, these data provide mechanistic insight for the non-canonical activation of IRE1α during infection, and reveal central roles for IRE1α in macrophage antifungal responses.

4.
Euro Surveill ; 28(13)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36995372

RESUMO

Many countries were under-prepared for the arrival of an emergency such as the COVID-19 pandemic. An intra-action review allows countries, systems and services to reflect on their preparedness and response to date, and revise their policies and approaches as needed. We describe the approach to undertaking an intra-action review of Ireland's Health Protection COVID-19 response during 2021. A project team within National Health Protection developed a project plan, identified key stakeholders, trained facilitators and designed workshop programmes, employing integrated collaborative web tools. Multidisciplinary representatives participated in three half-day, independently facilitated workshops on challenges and solutions within specific response areas: communication, governance and cross-cutting themes such as staff well-being. An all-stakeholder survey sought further in-depth detail. Participants reviewed the ongoing pandemic response in terms of good practice and challenges and recommended implementable solutions. We customised our mixed-methods approach using existing ECDC/WHO guidance, producing consensus recommendations during Ireland's fourth wave of COVID-19, with particular focus on pathways to implementation. Our adaptations may help others in formulating and customising methodological approaches. During an emergency, identifying and reflecting on good practices to retain, and areas for strengthening, with a clear action plan of implementing recommendations, will enhance preparedness now, and for future emergencies.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Pandemias/prevenção & controle , Irlanda/epidemiologia
5.
Sci Adv ; 9(5): eade8701, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36735777

RESUMO

Macrophage metabolic plasticity enables repurposing of electron transport from energy generation to inflammation and host defense. Altered respiratory complex II function has been implicated in cancer, diabetes, and inflammation, but regulatory mechanisms are incompletely understood. Here, we show that macrophage inflammatory activation triggers Complex II disassembly and succinate dehydrogenase subunit B loss through sequestration and selective mitophagy. Mitochondrial fission supported lipopolysaccharide-stimulated succinate dehydrogenase subunit B degradation but not sequestration. We hypothesized that this Complex II regulatory mechanism might be coordinated by the mitochondrial phospholipid cardiolipin. Cardiolipin synthase knockdown prevented lipopolysaccharide-induced metabolic remodeling and Complex II disassembly, sequestration, and degradation. Cardiolipin-depleted macrophages were defective in lipopolysaccharide-induced pro-inflammatory cytokine production, a phenotype partially rescued by Complex II inhibition. Thus, cardiolipin acts as a critical organizer of inflammatory metabolic remodeling.


Assuntos
Cardiolipinas , Succinato Desidrogenase , Humanos , Succinato Desidrogenase/metabolismo , Cardiolipinas/metabolismo , Lipopolissacarídeos/farmacologia , Mitocôndrias/metabolismo , Inflamação/metabolismo
6.
mBio ; 14(1): e0306822, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36475773

RESUMO

Immune cells must be able to adjust their metabolic programs to effectively carry out their effector functions. Here, we show that the endoplasmic reticulum (ER) stress sensor Inositol-requiring enzyme 1 alpha (IRE1α) and its downstream transcription factor X box binding protein 1 (XBP1) enhance the upregulation of glycolysis in classically activated macrophages (CAMs). The IRE1α-XBP1 signaling axis supports this glycolytic switch in macrophages when activated by lipopolysaccharide (LPS) stimulation or infection with the intracellular bacterial pathogen Brucella abortus. Importantly, these different inflammatory stimuli have distinct mechanisms of IRE1α activation; while Toll-like receptor 4 (TLR4) supports glycolysis under both conditions, TLR4 is required for activation of IRE1α in response to LPS treatment but not B. abortus infection. Though IRE1α and XBP1 are necessary for maximal induction of glycolysis in CAMs, activation of this pathway is not sufficient to increase the glycolytic rate of macrophages, indicating that the cellular context in which this pathway is activated ultimately dictates the cell's metabolic response and that IRE1α activation may be a way to fine-tune metabolic reprogramming. IMPORTANCE The immune system must be able to tailor its response to different types of pathogens in order to eliminate them and protect the host. When confronted with bacterial pathogens, macrophages, frontline defenders in the immune system, switch to a glycolysis-driven metabolism to carry out their antibacterial functions. Here, we show that IRE1α, a sensor of ER stress, and its downstream transcription factor XBP1 support glycolysis in macrophages during infection with Brucella abortus or challenge with Salmonella LPS. Interestingly, these stimuli activate IRE1α by independent mechanisms. While the IRE1α-XBP1 signaling axis promotes the glycolytic switch, activation of this pathway is not sufficient to increase glycolysis in macrophages. This study furthers our understanding of the pathways that drive macrophage immunometabolism and highlights a new role for IRE1α and XBP1 in innate immunity.


Assuntos
Proteínas Serina-Treonina Quinases , Receptor 4 Toll-Like , Proteínas Serina-Treonina Quinases/genética , Receptor 4 Toll-Like/metabolismo , Endorribonucleases/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo , Lipopolissacarídeos/metabolismo , Resposta a Proteínas não Dobradas , Fatores de Transcrição/metabolismo , Estresse do Retículo Endoplasmático
7.
Hepatology ; 77(2): 530-545, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36069569

RESUMO

BACKGROUND AND AIMS: Detailed investigation of the biological pathways leading to hepatic fibrosis and identification of liver fibrosis biomarkers may facilitate early interventions for pediatric cholestasis. APPROACH AND RESULTS: A targeted enzyme-linked immunosorbent assay-based panel of nine biomarkers (lysyl oxidase, tissue inhibitor matrix metalloproteinase (MMP) 1, connective tissue growth factor [CTGF], IL-8, endoglin, periostin, Mac-2-binding protein, MMP-3, and MMP-7) was examined in children with biliary atresia (BA; n = 187), alpha-1 antitrypsin deficiency (A1AT; n = 78), and Alagille syndrome (ALGS; n = 65) and correlated with liver stiffness (LSM) and biochemical measures of liver disease. Median age and LSM were 9 years and 9.5 kPa. After adjusting for covariates, there were positive correlations among LSM and endoglin ( p = 0.04) and IL-8 ( p < 0.001) and MMP-7 ( p < 0.001) in participants with BA. The best prediction model for LSM in BA using clinical and lab measurements had an R2 = 0.437; adding IL-8 and MMP-7 improved R2 to 0.523 and 0.526 (both p < 0.0001). In participants with A1AT, CTGF and LSM were negatively correlated ( p = 0.004); adding CTGF to an LSM prediction model improved R2 from 0.524 to 0.577 ( p = 0.0033). Biomarkers did not correlate with LSM in ALGS. A significant number of biomarker/lab correlations were found in participants with BA but not those with A1AT or ALGS. CONCLUSIONS: Endoglin, IL-8, and MMP-7 significantly correlate with increased LSM in children with BA, whereas CTGF inversely correlates with LSM in participants with A1AT; these biomarkers appear to enhance prediction of LSM beyond clinical tests. Future disease-specific investigations of change in these biomarkers over time and as predictors of clinical outcomes will be important.


Assuntos
Síndrome de Alagille , Colestase , Técnicas de Imagem por Elasticidade , Hepatopatias , Humanos , Criança , Fígado/patologia , Metaloproteinase 7 da Matriz , Endoglina , Interleucina-8 , Colestase/patologia , Cirrose Hepática/diagnóstico , Cirrose Hepática/patologia , Hepatopatias/patologia , Biomarcadores , Síndrome de Alagille/patologia
8.
Pediatr Rheumatol Online J ; 20(1): 113, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482434

RESUMO

BACKGROUND: The Childhood Arthritis and Rheumatology Research Alliance (CARRA) developed consensus treatment plans (CTPs) to compare treatment initiation strategies for systemic juvenile idiopathic arthritis (sJIA). First-line options for sJIA treatment (FROST) was a prospective observational study to assess CTP outcomes using the CARRA Registry. METHODS: Patients with new-onset sJIA were enrolled if they received initial treatment according to the biologic CTPs (IL-1 or IL-6 inhibitor) or non-biologic CTPs (glucocorticoid (GC) monotherapy or methotrexate). CTPs could be used with or without systemic GC. Primary outcome was achievement of clinical inactive disease (CID) at 9 months without current use of GC. Due to the small numbers of patients in the non-biologic CTPs, no statistical comparisons were made between the CTPs. RESULTS: Seventy-three patients were enrolled: 63 (86%) in the biologic CTPs and 10 (14%) in the non-biologic CTPs. CTP choice appeared to be strongly influenced by physician preference. During the first month of follow-up, oral GC use was observed in 54% of biologic CTP patients and 90% of non-biologic CTPs patients. Five (50%) non-biologic CTP patients subsequently received biologics within 4 months of follow-up. Overall, 30/53 (57%) of patients achieved CID at 9 months without current GC use. CONCLUSION: Nearly all patients received treatment with biologics during the study period, and 46% of biologic CTP patients did not receive oral GC within the first month of treatment. The majority of patients had favorable short-term clinical outcomes. Increased use of biologics and decreased use of GC may lead to improved outcomes in sJIA.


Assuntos
Artrite Juvenil , Humanos , Artrite Juvenil/tratamento farmacológico , Projetos de Pesquisa
9.
PLoS Pathog ; 18(10): e1010855, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36191054

RESUMO

Infection of the human gut by Salmonella enterica Typhimurium (STM) results in a localized inflammatory disease that is not mimicked in murine infections. To determine mechanisms by which neutrophils, as early responders to bacterial challenge, direct inflammatory programming of human intestinal epithelium, we established a multi-component human intestinal organoid (HIO) model of STM infection. HIOs were micro-injected with STM and seeded with primary human polymorphonuclear leukocytes (PMN-HIOs). PMNs did not significantly alter luminal colonization of Salmonella, but their presence reduced intraepithelial bacterial burden. Adding PMNs to infected HIOs resulted in substantial accumulation of shed TUNEL+ epithelial cells that was driven by PMN Caspase-1 activity. Inhibition of Caspases-1, -3 or -4 abrogated epithelial cell death and extrusion in the infected PMN-HIOs but only Caspase-1 inhibition significantly increased bacterial burden in the PMN-HIO epithelium. Thus, PMNs promote cell death in human intestinal epithelial cells through multiple caspases as a protective response to infection. IL-1ß was necessary and sufficient to induce cell shedding in the infected HIOs. These data support a critical innate immune function for human neutrophils in amplifying cell death and extrusion of human epithelial cells from the Salmonella-infected intestinal monolayer.


Assuntos
Neutrófilos , Infecções por Salmonella , Animais , Humanos , Camundongos , Caspases/metabolismo , Células Epiteliais , Mucosa Intestinal/microbiologia , Infecções por Salmonella/metabolismo , Salmonella typhimurium
10.
Antibiotics (Basel) ; 11(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35453240

RESUMO

Despite its use for decades, pharmacokinetic (PK) and safety studies on colistin are limited. We conducted a phase l, open-label trial to evaluate the safety and PK of multiple doses of intravenous (IV) and aerosolized colistimethate sodium (CMS) administered separately and in combination. In total, 31 healthy adults were enrolled into three cohorts of 9, 10, and 12 participants, respectively. Each cohort received increasing doses of CMS over three dosing periods as follows: Period 1 (IV only), 2.5 mg/kg every 12 h (q12h) to 3.3 mg/kg every 8 h (q8h); Period 2 (aerosolized only), 75 mg 2-4 doses, and Period 3 (combined IV aerosolized), in which was Periods 1 and 2 combined. Safety assessments, serum and lung concentrations of colistin analytes (colistin A, colistin B, CMS A, and CMS B), and kidney biomarkers were measured at specified time points. Increasing the CMS dose from 2.5 mg/kg q12h to q8h resulted in a 33% increase in serum colistin A concentrations from 3.9 µg/mL to 5.3 µg/mL-well above the accepted target of 2 µg/mL for 6 h after dosing, without evidence of nephrotoxicity. However, there was an increase in neurotoxicity, primarily perioral and lingual paresthesias, and self-limited ataxia. IV administration did not increase the lung concentrations of colistin.

11.
JCI Insight ; 7(9)2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35358091

RESUMO

Wound repair following acute injury requires a coordinated inflammatory response. Type I IFN signaling is important for regulating the inflammatory response after skin injury. IFN-κ, a type I IFN, has recently been found to drive skin inflammation in lupus and psoriasis; however, the role of IFN-κ in the context of normal or dysregulated wound healing is unclear. Here, we show that Ifnk expression is upregulated in keratinocytes early after injury and is essential for normal tissue repair. Under diabetic conditions, IFN-κ was decreased in wound keratinocytes, and early inflammation was impaired. Furthermore, we found that the histone methyltransferase mixed-lineage leukemia 1 (MLL1) is upregulated early following injury and regulates Ifnk expression in diabetic wound keratinocytes via an H3K4me3-mediated mechanism. Using a series of in vivo studies with a geneticall y engineered mouse model (Mll1fl/fl K14cre-) and human wound tissues from patients with T2D, we demonstrate that MLL1 controls wound keratinocyte-mediated Ifnk expression and that Mll1 expression is decreased in T2D keratinocytes. Importantly, we found the administration of IFN-κ early following injury improves diabetic tissue repair through increasing early inflammation, collagen deposition, and reepithelialization. These findings have significant implications for understanding the complex role type I IFNs play in keratinocytes in normal and diabetic wound healing. Additionally, they suggest that IFN may be a viable therapeutic target to improve diabetic wound repair.


Assuntos
Diabetes Mellitus Tipo 2 , Interferon Tipo I , Animais , Humanos , Inflamação/metabolismo , Camundongos , Cicatrização/fisiologia
12.
J Cell Sci ; 135(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35107133

RESUMO

The internalization of solutes by macropinocytosis provides an essential route for nutrient uptake in many cells. Macrophages increase macropinocytosis in response to growth factors and other stimuli. To test the hypothesis that nutrient environments modulate solute uptake by macropinocytosis, this study analyzed the effects of extracellular amino acids on the accumulation of fluorescent fluid-phase probes in murine macrophages. Nine amino acids, added individually or together, were capable of suppressing macropinocytosis in murine bone marrow-derived macrophages stimulated with the growth factors colony stimulating factor 1 (CSF1) or interleukin 34, both ligands of the CSF1 receptor (CSF1R). The suppressive amino acids did not inhibit macropinocytosis in response to lipopolysaccharide, the chemokine CXCL12, or the tumor promoter phorbol myristate acetate. Suppressive amino acids promoted release of CSF1R from cells and resulted in the formation of smaller macropinosomes in response to CSF1. This suppression of growth factor-stimulated macropinocytosis indicates that different nutrient environments modulate CSF1R levels and bulk ingestion by macropinocytosis, with likely consequences for macrophage growth and function.


Assuntos
Aminoácidos , Fator Estimulador de Colônias de Macrófagos , Animais , Endossomos/metabolismo , Macrófagos/metabolismo , Camundongos , Pinocitose/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/metabolismo
13.
West J Nurs Res ; 44(10): 955-965, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34154460

RESUMO

Families of pediatric solid organ transplant recipients need ongoing education and support in the first 30 days following hospital discharge for the transplantation. The purpose of this report is to describe the feasibility, acceptability, and preliminary efficacy of a mHealth family-self management intervention, (myFAMI), designed to improve post-discharge outcomes of coping, family quality of life, self-efficacy, family self-management, and utilization of health care resources. We enrolled 46 primary family members. myFAMI was feasible and acceptable; 81% (n=17/21) of family members completed the app at least 24/30 days (goal 80% completion rate). Family members generated 134 trigger alerts and received a nurse response within the goal timeframe of < 2 h 99% of the time. Although there were no significant differences between groups, primary outcomes were in the expected direction. The intervention was well received and is feasible for future post-discharge interventions for families of children who receive an organ transplant.


Assuntos
Autogestão , Telemedicina , Assistência ao Convalescente , Criança , Estudos de Viabilidade , Humanos , Alta do Paciente , Qualidade de Vida
14.
PLoS Pathog ; 17(10): e1009987, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34669717

RESUMO

Salmonella enterica represents over 2500 serovars associated with a wide-ranging spectrum of disease; from self-limiting gastroenteritis to invasive infections caused by non-typhoidal serovars (NTS) and typhoidal serovars, respectively. Host factors strongly influence infection outcome as malnourished or immunocompromised individuals can develop invasive infections from NTS, however, comparative analyses of serovar-specific host responses have been constrained by reliance on limited model systems. Here we used human intestinal organoids (HIOs), a three-dimensional "gut-like" in vitro system derived from human embryonic stem cells, to elucidate similarities and differences in host responses to NTS and typhoidal serovars. HIOs discriminated between the two most prevalent NTS, Salmonella enterica serovar Typhimurium (STM) and Salmonella enterica serovar Enteritidis (SE), and typhoidal serovar Salmonella enterica serovar Typhi (ST) in epithelial cell invasion, replication and transcriptional responses. Pro-inflammatory signaling and cytokine output was reduced in ST-infected HIOs compared to NTS infections, consistent with early stages of NTS and typhoidal diseases. While we predicted that ST would induce a distinct transcriptional profile from the NTS strains, more nuanced expression profiles emerged. Notably, pathways involved in cell cycle, metabolism and mitochondrial functions were downregulated in STM-infected HIOs and upregulated in SE-infected HIOs. These results correlated with suppression of cellular proliferation and induction of host cell death in STM-infected HIOs and in contrast, elevated levels of reactive oxygen species production in SE-infected HIOs. Collectively, these results suggest that the HIO model is well suited to reveal host transcriptional programming specific to infection by individual Salmonella serovars, and that individual NTS may provoke unique host epithelial responses during intestinal stages of infection.


Assuntos
Perfilação da Expressão Gênica , Intestinos/microbiologia , Intestinos/fisiopatologia , Infecções por Salmonella/microbiologia , Infecções por Salmonella/fisiopatologia , Humanos , Organoides , Salmonella enterica , Sorogrupo , Transcriptoma
15.
J Immunol ; 207(1): 210-220, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34145058

RESUMO

Activation of the endoplasmic reticulum stress sensor, IRE1α, is required for effective immune responses against bacterial infection and is associated with human inflammatory diseases in which neutrophils are a key immune component. However, the specific role of IRE1α in regulating neutrophil effector function has not been studied. In this study, we show that infection-induced IRE1α activation licenses neutrophil antimicrobial capacity, including IL-1ß production, formation of neutrophil extracellular traps (NETs), and methicillin-resistant Staphylococcus aureus (MRSA) killing. Inhibition of IRE1α diminished production of mitochondrial reactive oxygen species and decreased CASPASE-2 activation, which both contributed to neutrophil antimicrobial activity. Mice deficient in CASPASE-2 or neutrophil IRE1α were highly susceptible to MRSA infection and failed to effectively form NETs in the s.c. abscess. IRE1α activation enhanced calcium influx and citrullination of histone H3 independently of mitochondrial reactive oxygen species production, suggesting that IRE1α coordinates multiple pathways required for NET formation. Our data demonstrate that the IRE1α-CASPASE-2 axis is a major driver of neutrophil activity against MRSA infection and highlight the importance of IRE1α in neutrophil antibacterial function.


Assuntos
Endorribonucleases/imunologia , Staphylococcus aureus Resistente à Meticilina/imunologia , Neutrófilos/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Animais , Voluntários Saudáveis , Humanos , Interleucina-1beta/biossíntese , Camundongos , Transdução de Sinais/imunologia
16.
Arthritis Rheumatol ; 73(10): 1898-1909, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34105312

RESUMO

OBJECTIVE: The optimal time to start biologics in polyarticular juvenile idiopathic arthritis (JIA) remains uncertain. The Childhood Arthritis and Rheumatology Research Alliance (CARRA) developed 3 consensus treatment plans (CTPs) for untreated polyarticular JIA to compare strategies for starting biologics. METHODS: Start Time Optimization of Biologics in Polyarticular JIA (STOP-JIA) was a prospective, observational, CARRA Registry study comparing the effectiveness of 3 CTPs: 1) the step-up plan (initial nonbiologic disease-modifying antirheumatic drug [DMARD] monotherapy, adding a biologic if needed, 2) the early combination plan (DMARD and biologic started together), and 3) the biologic first plan (biologic monotherapy). The primary outcome measure was clinically inactive disease according to the provisional American College of Rheumatology (ACR) criteria, without glucocorticoids, at 12 months. Secondary outcome measures included Patient-Reported Outcomes Measurement Information System (PROMIS) pain interference and mobility scores, inactive disease as defined by the clinical Juvenile Arthritis Disease Activity Score in 10 joints (JADAS-10), and the ACR Pediatric 70 criteria (Pedi 70). RESULTS: Of 400 patients enrolled, 257 (64%) began the step-up plan, 100 (25%) the early combination plan, and 43 (11%) the biologic first plan. After propensity score weighting and multiple imputation, clinically inactive disease according to the ACR criteria was achieved in 37% of those on the early combination plan, 32% on the step-up plan, and 24% on the biologic first plan (P = 0.17). Inactive disease according to the clinical JADAS-10 (score ≤2.5) was also achieved in more patients on the early combination plan than the step-up plan (59% versus 43%; P = 0.03), as was ACR Pedi 70 (81% versus 62%; P = 0.008), but generalizability was limited by missing data. PROMIS measures improved in all groups, but without significant differences. Twenty serious adverse events were reported (mostly infections). CONCLUSION: Achievement of clinically inactive disease without glucocorticoids did not significantly differ between groups at 12 months. While there was a significantly higher likelihood of early combination therapy achieving inactive disease according to the clinical JADAS-10 and ACR Pedi 70, these results require further exploration.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Juvenil/tratamento farmacológico , Produtos Biológicos/uso terapêutico , Adolescente , Antirreumáticos/administração & dosagem , Produtos Biológicos/administração & dosagem , Criança , Consenso , Esquema de Medicação , Humanos , Fatores de Tempo , Tempo para o Tratamento , Resultado do Tratamento
17.
mBio ; 12(3)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006652

RESUMO

The intestinal epithelium is a primary interface for engagement of the host response by foodborne pathogens, like Salmonella enterica Typhimurium. While the interaction of S Typhimurium with the mammalian host has been well studied in transformed epithelial cell lines or in the complex intestinal environment in vivo, few tractable models recapitulate key features of the intestine. Human intestinal organoids (HIOs) contain a polarized epithelium with functionally differentiated cell subtypes, including enterocytes and goblet cells and a supporting mesenchymal cell layer. HIOs contain luminal space that supports bacterial replication, are more amenable to experimental manipulation than animals and are more reflective of physiological host responses. Here, we use the HIO model to define host transcriptional responses to S Typhimurium infection, also determining host pathways dependent on Salmonella pathogenicity island-1 (SPI-1)- and -2 (SPI-2)-encoded type 3 secretion systems (T3SS). Consistent with prior findings, we find that S Typhimurium strongly stimulates proinflammatory gene expression. Infection-induced cytokine gene expression was rapid, transient, and largely independent of SPI-1 T3SS-mediated invasion, likely due to continued luminal stimulation. Notably, S Typhimurium infection led to significant downregulation of host genes associated with cell cycle and DNA repair, leading to a reduction in cellular proliferation, dependent on SPI-1 and SPI-2 T3SS. The transcriptional profile of cell cycle-associated target genes implicates multiple miRNAs as mediators of S Typhimurium-dependent cell cycle suppression. These findings from Salmonella-infected HIOs delineate common and distinct contributions of SPI-1 and SPI-2 T3SSs in inducing early host responses during enteric infection and reinforce host cell proliferation as a process targeted by SalmonellaIMPORTANCESalmonella enterica serovar Typhimurium (S Typhimurium) causes a significant health burden worldwide, yet host responses to initial stages of intestinal infection remain poorly understood. Due to differences in infection outcome between mice and humans, physiological human host responses driven by major virulence determinants of Salmonella have been more challenging to evaluate. Here, we use the three-dimensional human intestinal organoid model to define early responses to infection with wild-type S Typhimurium and mutants defective in the SPI-1 or SPI-2 type-3 secretion systems. While both secretion system mutants show defects in mouse models of oral Salmonella infection, the specific contributions of each secretion system are less well understood. We show that S Typhimurium upregulates proinflammatory pathways independently of either secretion system, while the downregulation of the host cell cycle pathways relies on both SPI-1 and SPI-2. These findings lay the groundwork for future studies investigating how SPI-1- and SPI-2-driven host responses affect infection outcome and show the potential of this model to study host-pathogen interactions with other serovars to understand how initial interactions with the intestinal epithelium may affect pathogenesis.


Assuntos
Proteínas de Bactérias/genética , Enterócitos/microbiologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Proteínas de Membrana/genética , Organoides/microbiologia , Salmonella typhimurium/genética , Linhagem Celular , Regulação Bacteriana da Expressão Gênica , Humanos , Mucosa Intestinal/microbiologia , Intestinos/citologia , Intestinos/microbiologia , Salmonella typhimurium/patogenicidade , Sorogrupo , Fatores de Virulência
18.
J Clin Invest ; 131(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33561013

RESUMO

Neutrophils amplify inflammation in lupus through the release of neutrophil extracellular traps (NETs). The endoplasmic reticulum stress sensor inositol-requiring enzyme 1 α (IRE1α) has been implicated as a perpetuator of inflammation in various chronic diseases; however, IRE1α has been little studied in relation to neutrophil function or lupus pathogenesis. Here, we found that neutrophils activated by lupus-derived immune complexes demonstrated markedly increased IRE1α ribonuclease activity. Importantly, in neutrophils isolated from patients with lupus, we also detected heightened IRE1α activity that was correlated with global disease activity. Immune complex-stimulated neutrophils produced both mitochondrial ROS (mitoROS) and the activated form of caspase-2 in an IRE1α-dependent fashion, whereas inhibition of IRE1α mitigated immune complex-mediated NETosis (in both human neutrophils and a mouse model of lupus). Administration of an IRE1α inhibitor to lupus-prone MRL/lpr mice over 8 weeks reduced mitoROS levels in peripheral blood neutrophils, while also restraining plasma cell expansion and autoantibody formation. In summary, these data identify a role for IRE1α in the hyperactivity of lupus neutrophils and show that this pathway is upstream of mitochondrial dysfunction, mitoROS formation, and NETosis. We believe that inhibition of the IRE1α pathway is a novel strategy for neutralizing NETosis in lupus, and potentially other inflammatory conditions.


Assuntos
Estresse do Retículo Endoplasmático/imunologia , Endorribonucleases/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Neutrófilos/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Animais , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/genética , Feminino , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/patologia , Masculino , Camundongos , Camundongos Endogâmicos MRL lpr , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/imunologia , Neutrófilos/patologia , Proteínas Serina-Treonina Quinases/genética , Espécies Reativas de Oxigênio/imunologia
19.
J Adolesc Young Adult Oncol ; 10(6): 645-653, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33512257

RESUMO

Purpose: Adolescent and young adult (AYA) patients (15-39 years old) with acute lymphoblastic leukemia (ALL) have less favorable outcomes and higher treatment-related mortality as compared with older children with ALL. Minimal data exist regarding how well AYA patients tolerate the intensity of chemotherapy at doses and regimens designed for children, and the toxicities suffered by this population at children's hospitals have not been thoroughly characterized. Methods: Pediatric Health Information Systems database was queried to analyze health care outcomes in pediatric (ages 10-14) and AYA patients (ages 15-39) with ALL hospitalized between January 1999 and December 2014. We extracted relevant ICD-9 data for each patient related to grades 3 or 4 toxicities as outlined by the NCI. Results: A total of 5345 hospital admissions met inclusion criteria, representing 4046 unique patients. Of these admissions, 2195 (41.1%) were in the AYA age group, and the remainder were in the 10-14-year-old group. AYA patients had a significantly higher incidence of intensive care unit stay but no difference in median hospital stay nor mortality. AYA patients had increased toxicities in almost every organ system as compared with older children. Conclusions: In this large multicenter US database study, we found an overall increased number of toxicities among AYA patients with ALL in children's hospitals. Compared with children between the ages of 10 and 15, AYA patients developed disproportionately higher toxicities from drugs commonly used in pediatric protocols for ALL. Prospective studies are needed to assess whether dose modifications for certain chemotherapeutics may improve the toxicity profile and health care burden of AYA patients with ALL treated in children's hospitals.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Doença Aguda , Adolescente , Adulto , Criança , Hospitais Pediátricos , Humanos , Tempo de Internação , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Estudos Prospectivos , Estados Unidos/epidemiologia , Adulto Jovem
20.
Cancer Prev Res (Phila) ; 14(2): 215-222, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33097490

RESUMO

Juvenile polyposis syndrome (JPS) is a clinically diagnosed hamartomatous polyposis syndrome that increases the risk of gastrointestinal cancer. Approximately 40%-50% of JPS is caused by a germline disease-causing variant (DCV) in the SMAD4 or BMPR1A genes. The aim of this study was to characterize the phenotype of DCV-negative JPS and compare it with DCV-positive JPS. Herein, we analyzed a cohort of 145 individuals with JPS from nine institutions, including both pediatric and adult centers. Data analyzed included age at diagnosis, family history, cancer history, need for colectomy/gastrectomy, and polyp number and location. Compared with DCV-positive JPS, DCV-negative JPS was associated with younger age at diagnosis (P < 0.001), lower likelihood of having a family history of JPS (P < 0.001), and a lower risk of colectomy (P = 0.032). None of the DCV-negative individuals had gastric or duodenal polyps, and polyp burden decreased after the first decade compared with DCV-positive JPS. Subgroup analysis between SMAD4 and BMPR1A carriers showed that SMAD4 carriers were more likely to have a family history of JPS and required gastrectomy. Taken together, these data provide the largest phenotypic characterization of individuals with DCV-negative JPS to date, showing that this group has distinct differences compared with JPS due to a SMAD4 or BMPR1A variant. Better understanding of phenotype and cancer risk associated with JPS both with and without a DCV may ultimately allow for individualized management of polyposis and cancer risk.Prevention Relevance: Juvenile Polyposis Syndrome (JPS) is a gastrointestinal cancer predisposition syndrome requiring lifelong surveillance, however there is limited data comparing individuals with and without a germline disease-causing variant in SMAD4 or BMPR1A Herein we show that individuals with JPS without an underlying disease-causing variant have distinct phenotypic differences including lack of upper gastrointestinal polyps and lower rates of a family history of JPS, suggesting that a different approach to management may be appropriate in this population.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Colectomia/estatística & dados numéricos , Polipose Intestinal/congênito , Síndromes Neoplásicas Hereditárias/genética , Proteína Smad4/genética , Conduta Expectante/estatística & dados numéricos , Adolescente , Adulto , Fatores Etários , Idoso , Criança , Pré-Escolar , Colectomia/normas , Colonoscopia/normas , Colonoscopia/estatística & dados numéricos , Feminino , Seguimentos , Mutação em Linhagem Germinativa , Humanos , Polipose Intestinal/diagnóstico , Polipose Intestinal/genética , Polipose Intestinal/terapia , Masculino , Anamnese/estatística & dados numéricos , Pessoa de Meia-Idade , Síndromes Neoplásicas Hereditárias/diagnóstico , Síndromes Neoplásicas Hereditárias/terapia , Guias de Prática Clínica como Assunto , Medicina de Precisão/métodos , Medicina de Precisão/estatística & dados numéricos , Conduta Expectante/normas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...