Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 315(4): F927-F941, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29897288

RESUMO

Kidney injury and sleep apnea (SA) are independent risk factors for hypertension. Exposing rats to intermittent hypoxia (IH) to simulate SA increases blood pressure whereas adenine feeding causes persistent kidney damage to model chronic kidney disease (CKD). We hypothesized that exposing CKD rats to IH would exacerbate the development of hypertension and renal failure. Male Sprague-Dawley rats were fed a 0.2% adenine diet or control diet (Control) until blood urea nitrogen was >120 mg/dl in adenine-fed rats (14 ± 4 days, mean ± SE). After 2 wk of recovery on normal chow, rats were exposed to IH (20 exposures/h of 5% O2-5% CO2 7 h/day) or control conditions (Air) for 6 wk. Mean arterial pressure (MAP) was monitored with telemeters, and plasma and urine samples were collected weekly to calculate creatinine clearance as an index of glomerular filtration rate (GFR). Prior to IH, adenine-fed rats had higher blood pressure than rats on control diet. IH treatment increased MAP in both groups, and after 6 wk, MAP levels in the CKD/IH rats were greater than those in the CKD/Air and Control/IH rats. MAP levels in the Control/Air rats were lower than those in the other three groups. Kidney histology revealed crystalline deposits, tubule dilation, and interstitial fibrosis in both CKD groups. IH caused no additional kidney damage. Plasma creatinine was similarly increased in both CKD groups throughout whereas IH alone increased plasma creatinine. IH increases blood pressure further in CKD rats without augmenting declines in GFR but appears to impair GFR in healthy rats. We speculate that treating SA might decrease hypertension development in CKD patients and protect renal function in SA patients.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/fisiopatologia , Hipóxia/fisiopatologia , Insuficiência Renal Crônica/fisiopatologia , Animais , Pressão Arterial/fisiologia , Doenças Cardiovasculares/fisiopatologia , Rim/fisiopatologia , Testes de Função Renal , Masculino , Ratos Sprague-Dawley , Insuficiência Renal Crônica/complicações
2.
Lab Chip ; 9(7): 1005-10, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19294315

RESUMO

The application of biomolecular active transport systems offers a potential route for downscaling multiple analyte assays for lab-on-a-chip applications. Recently, the capture and transport of a wide range of target analytes including proteins, virus particles, and DNA have been demonstrated using kinesin-driven molecular shuttles. The molecular shuttles consisted of microtubule (MT) filaments that were functionalized with either analyte-selective antibodies or complementary DNA, thus facilitating selective target capture and transport. In the present work, we have applied this microfluidic platform for the simultaneous detection of multiple target protein analytes. Multiplexing of molecular shuttles was achieved by immobilizing biotinylated antibodies against interleukin-2 (IL-2) and tumor necrosis factor-alpha (TNF-alpha) on biotinylated MTs using a streptavidin bridge. Nanocrystal quantum dots of different sizes and spectral emissions were functionalized with IL-2 and TNF-alpha antibodies to facilitate multiplexed detection. In this paper we discuss the results of selectivity and motility in single and multiplexed assays.


Assuntos
Citocinas/análise , Cinesinas/química , Nanotecnologia/métodos , Anticorpos Imobilizados , Transporte Biológico , Biotinilação , Interleucina-2/análise , Procedimentos Analíticos em Microchip , Microtúbulos/química , Proteínas Motores Moleculares/química , Nanoestruturas , Estreptavidina/química , Fator de Necrose Tumoral alfa/análise
3.
Anal Chem ; 78(5): 1405-11, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16503587

RESUMO

Hormones are important bioactive compounds in blood and tissue that vary in concentration in response to stress and certain disease states. Establishing the changes in physiological hormone concentrations over time can lead to more effective diagnoses and perhaps a better understanding of the evolution of stress and disease. To monitor concentration over time, the sampling must be rapid and noninvasive; specimens such as saliva that require little effort to collect are preferred. However, more sensitive assay techniques are needed when compared to blood analysis since free hormone concentration in saliva is only a small fraction of the concentration in circulating blood. In this work, magnetic field-induced structures of paramagnetic particles are used as a solid substrate to demonstrate improved detection limits for a separation-free assay of cortisol. Once formed, the structures are subjected to a rotating magnetic field and this leads to two important features. First is the ability to utilize frequency and phase filtering (lock-in amplification) for the signal generated from surface-bound labeled species. Second is the improved mass transport of the antigen to the surface of the rotating structures. These two unique capabilities result in a quantifiable signal at a relatively low target antigen concentration. This method has been demonstrated with the detection of fluorescein isothiocyanate-labeled cortisol (FITC-cortisol) at a concentration of 300 pM.


Assuntos
Fluoresceína-5-Isotiocianato , Hidrocortisona/análise , Magnetismo , Desenho de Equipamento , Corantes Fluorescentes , Imunoensaio , Tamanho da Partícula , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...