Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928240

RESUMO

Extracellular vesicles (EVs) hold great promise for clinical application as new diagnostic and therapeutic modalities. This paper describes major GMP-based upstream and downstream manufacturing processes for EV large-scale production, also focusing on post-processing technologies such as surface bioengineering and uploading studies to yield novel EV-based diagnostics and advanced therapy medicinal products. This paper also focuses on the quality, safety, and efficacy issues of the bioengineered EV drug candidates before first-in-human studies. Because clinical trials involving extracellular vesicles are on the global rise, this paper encompasses different clinical studies registered on clinical-trial register platforms, with varying levels of advancement, highlighting the growing interest in EV-related clinical programs. Navigating the regulatory affairs of EVs poses real challenges, and obtaining marketing authorization for EV-based medicines remains complex due to the lack of specific regulatory guidelines for such novel products. This paper discusses the state-of-the-art regulatory knowledge to date on EV-based diagnostics and medicinal products, highlighting further research and global regulatory needs for the safe and reliable implementation of bioengineered EVs as diagnostic and therapeutic tools in clinical settings. Post-marketing pharmacovigilance for EV-based medicinal products is also presented, mainly addressing such topics as risk assessment and risk management.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Humanos , Animais
2.
ACS Appl Mater Interfaces ; 16(25): 31997-32016, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38869318

RESUMO

Personalized medicine is a new approach to modern oncology. Here, to facilitate the application of extracellular vesicles (EVs) derived from lung cancer cells as potent advanced therapy medicinal products in lung cancer, the EV membrane was functionalized with a specific ligand for targeting purposes. In this role, the most effective heptapeptide in binding to lung cancer cells (PTHTRWA) was used. The functionalization process of EV surface was performed through the C- or N-terminal end of the heptapeptide. To prove the activity of the EVs functionalized with PTHTRWA, both a model of lipid membrane mimicking normal and cancerous cell membranes as well as human adenocarcinomic alveolar basal epithelial cells (A549) and human normal bronchial epithelial cells (BEAS-2B) have been exposed to these bioconstructs. Magnetic resonance imaging (MRI) showed that the as-bioengineered PTHTRWA-EVs loaded with superparamagnetic iron oxide nanoparticle (SPIO) cargos reach the growing tumor when dosed intravenously in NUDE Balb/c mice bearing A549 cancer. Molecular dynamics (MD) in silico studies elucidated a high affinity of the synthesized peptide to the α5ß1 integrin. Preclinical safety assays did not evidence any cytotoxic or genotoxic effects of the PTHTRWA-bioengineered EVs.


Assuntos
Vesículas Extracelulares , Neoplasias Pulmonares , Camundongos Endogâmicos BALB C , Camundongos Nus , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Animais , Camundongos , Células A549 , Nanopartículas Magnéticas de Óxido de Ferro/química
3.
Toxicol In Vitro ; 99: 105850, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38801838

RESUMO

Cytotoxic and genotoxic effects of novel mPEG-silane coated iron(III) oxide nanoparticles doped with magnesium (Mg0.1-γ-Fe2O3(mPEG-silane)0.5) have been investigated on human adenocarcinomic alveolar basal epithelial (A549) and human normal bronchial epithelial (BEAS-2B) cells. In the studies several molecular and cellular targets addressing to cell membrane, cytoplasm organelles and nucleus components were served as toxicological endpoints. The as-synthesized nanoparticles were found to be stable in the cell culture media and were examined for different concentration and exposure times. No cytotoxicity of the tested nanoparticles was found although these nanoparticles slightly increased reactive oxygen species in both cell types studied. Mg0.1-γ-Fe2O3(mPEG-silane)0.5 nanoparticles did not produce any DNA strand breaks and oxidative DNA damages in A549 and BEAS-2B cells. Different concentration of Mg0.1-γ-Fe2O3(mPEG-silane)0.5 nanoparticles and different incubation time did not affect cell migration. The lung cancer cells' uptake of the nanoparticles was more effective than in normal lung cells. Altogether, the results evidence that mPEG-silane coated iron(III) oxide nanoparticles doped with magnesium do not elucidate any deleterious effects on human normal and cancerous lung cells despite cellular uptake of these nanoparticles. Therefore, it seems reasonable to conclude that these novel biocompatible nanoparticles are promising candidates for further development towards medical applications.


Assuntos
Dano ao DNA , Pulmão , Magnésio , Polietilenoglicóis , Silanos , Humanos , Silanos/toxicidade , Silanos/química , Polietilenoglicóis/toxicidade , Polietilenoglicóis/química , Magnésio/química , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/citologia , Neoplasias Pulmonares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Compostos Férricos/toxicidade , Compostos Férricos/química , Movimento Celular/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Nanopartículas Magnéticas de Óxido de Ferro/química , Linhagem Celular Tumoral , Células A549
4.
Nat Protoc ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755447

RESUMO

Making research data findable, accessible, interoperable and reusable (FAIR) is typically hampered by a lack of skills in technical aspects of data management by data generators and a lack of resources. We developed a Template Wizard for researchers to easily create templates suitable for consistently capturing data and metadata from their experiments. The templates are easy to use and enable the compilation of machine-readable metadata to accompany data generation and align them to existing community standards and databases, such as eNanoMapper, streamlining the adoption of the FAIR principles. These templates are citable objects and are available as online tools. The Template Wizard is designed to be user friendly and facilitates using and reusing existing templates for new projects or project extensions. The wizard is accompanied by an online template validator, which allows self-evaluation of the template (to ensure mapping to the data schema and machine readability of the captured data) and transformation by an open-source parser into machine-readable formats, compliant with the FAIR principles. The templates are based on extensive collective experience in nanosafety data collection and include over 60 harmonized data entry templates for physicochemical characterization and hazard assessment (cell viability, genotoxicity, environmental organism dose-response tests, omics), as well as exposure and release studies. The templates are generalizable across fields and have already been extended and adapted for microplastics and advanced materials research. The harmonized templates improve the reliability of interlaboratory comparisons, data reuse and meta-analyses and can facilitate the safety evaluation and regulation process for (nano) materials.

5.
J Biomed Mater Res B Appl Biomater ; 112(1): e35357, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38247242

RESUMO

To improve the wear resistance of articulating metallic joint endoprostheses, the surfaces can be coated with titanium niobium nitride (TiNbN). Under poor tribological conditions or malalignment, wear can occur on these implant surfaces in situ. This study investigated the biological response of human osteoblasts to wear particles generated from TiNbN-coated hip implants. Abrasive particles were generated in a hip simulator according to ISO 14242-1/-2 and extracted with Proteinase K. Particle characteristics were evaluated by electron microscopy and energy dispersive x-ray spectroscopy (EDS), inductively coupled plasma mass spectrometry (ICP-MS) and dynamic light scattering (DLS) measurements. Human osteoblasts were exposed to different particle dilutions (1:20, 1:50, and 1:100), and cell viability and gene expression levels of osteogenic markers and inflammatory mediators were analyzed after 4 and 7 days. Using ICP-MS, EDS, and DLS measurements, ~70% of the particles were identified as TiNbN, ranging from 39 to 94 nm. The particles exhibited a flat and subangular morphology. Exposure to particles did not influence cell viability and osteoblastic differentiation capacity. Protein levels of collagen type 1, osteoprotegerin, and receptor activator of nuclear factor κB ligand were almost unaffected. Moreover, the pro-inflammatory response via interleukins 6 and 8 was minor induced after particle contact. A high number of TiNbN wear particles only slightly affected osteoblasts' differentiation ability and inflammatory response compared to metallic particles. Nevertheless, further studies should investigate the role of these particles in peri-implant bone tissue, especially concerning other cell types.


Assuntos
Próteses Articulares Metal-Metal , Nióbio , Titânio , Humanos , Metais , Osteoblastos , Osso e Ossos
6.
Front Pharmacol ; 13: 991751, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278182

RESUMO

Decitabine (DAC), a DNA methyltransferase (DNMT) inhibitor, is tested in combination with conventional anticancer drugs as a treatment option for various solid tumors. Although epigenome modulation provides a promising avenue in treating resistant cancer types, more studies are required to evaluate its safety and ability to normalize the aberrant transcriptional profiles. As deoxycytidine kinase (DCK)-mediated phosphorylation is a rate-limiting step in DAC metabolic activation, we hypothesized that its intracellular overexpression could potentiate DAC's effect on cell methylome and thus increase its therapeutic efficacy. Therefore, two breast cancer cell lines, JIMT-1 and T-47D, differing in their molecular characteristics, were transfected with a DCK expression vector and exposed to low-dose DAC (approximately IC20). Although transfection resulted in a significant DCK expression increase, further enhanced by DAC exposure, no transfection-induced changes were found at the global DNA methylation level or in cell viability. In parallel, an integrative approach was applied to decipher DAC-induced, methylation-mediated, transcriptomic reprogramming. Besides large-scale hypomethylation, accompanied by up-regulation of gene expression across the entire genome, DAC also induced hypermethylation and down-regulation of numerous genes in both cell lines. Interestingly, TET1 and TET2 expression halved in JIMT-1 cells after DAC exposure, while DNMTs' changes were not significant. The protein digestion and absorption pathway, containing numerous collagen and solute carrier genes, ranking second among membrane transport proteins, was the top enriched pathway in both cell lines when hypomethylated and up-regulated genes were considered. Moreover, the calcium signaling pathway, playing a significant role in drug resistance, was among the top enriched in JIMT-1 cells. Although low-dose DAC demonstrated its ability to normalize the expression of tumor suppressors, several oncogenes were also up-regulated, a finding, that supports previously raised concerns regarding its broad reprogramming potential. Importantly, our research provides evidence about the involvement of active demethylation in DAC-mediated transcriptional reprogramming.

7.
Biomed Pharmacother ; 147: 112662, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35091237

RESUMO

Acquired drug resistance and metastasis in breast cancer (BC) are coupled with epigenetic deregulation of gene expression. Epigenetic drugs, aiming to reverse these aberrant transcriptional patterns and sensitize cancer cells to other therapies, provide a new treatment strategy for drug-resistant tumors. Here we investigated the ability of DNA methyltransferase (DNMT) inhibitor decitabine (DAC) to increase the sensitivity of BC cells to anthracycline antibiotic doxorubicin (DOX). Three cell lines representing different molecular BC subtypes, JIMT-1, MDA-MB-231 and T-47D, were used to evaluate the synergy of sequential DAC + DOX treatment in vitro. The cytotoxicity, genotoxicity, apoptosis, and migration capacity were tested in 2D and 3D cultures. Moreover, genome-wide DNA methylation and transcriptomic analyses were employed to understand the differences underlying DAC responsiveness. The ability of DAC to sensitize trastuzumab-resistant HER2-positive JIMT-1 cells to DOX was examined in vivo in an orthotopic xenograft mouse model. DAC and DOX synergistic effect was identified in all tested cell lines, with JIMT-1 cells being most sensitive to DAC. Based on the whole-genome data, we assume that the aggressive behavior of JIMT-1 cells can be related to the enrichment of epithelial-to-mesenchymal transition and stemness-associated pathways in this cell line. The four-week DAC + DOX sequential administration significantly reduced the tumor growth, DNMT1 expression, and global DNA methylation in xenograft tissues. The efficacy of combination therapy was comparable to effect of pegylated liposomal DOX, used exclusively for the treatment of metastatic BC. This work demonstrates the potential of epigenetic drugs to modulate cancer cells' sensitivity to other forms of anticancer therapy.


Assuntos
Neoplasias da Mama/patologia , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , Decitabina/farmacologia , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/análogos & derivados , Transição Epitelial-Mesenquimal , Feminino , Genes erbB-2/genética , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos SCID , Testes de Mutagenicidade , Polietilenoglicóis/farmacologia , Distribuição Aleatória , Trastuzumab/farmacologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cancers (Basel) ; 12(12)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287297

RESUMO

Epigenetic dysregulation has been recognized as a critical factor contributing to the development of resistance against standard chemotherapy and to breast cancer progression via epithelial-to-mesenchymal transition. Although the efficacy of the first-generation epigenetic drugs (epi-drugs) in solid tumor management has been disappointing, there is an increasing body of evidence showing that epigenome modulation, in synergy with other therapeutic approaches, could play an important role in cancer treatment, reversing acquired therapy resistance. However, the epigenetic therapy of solid malignancies is not straightforward. The emergence of nanotechnologies applied to medicine has brought new opportunities to advance the targeted delivery of epi-drugs while improving their stability and solubility, and minimizing off-target effects. Furthermore, the omics technologies, as powerful molecular epidemiology screening tools, enable new diagnostic and prognostic epigenetic biomarker identification, allowing for patient stratification and tailored management. In combination with new-generation epi-drugs, nanomedicine can help to overcome low therapeutic efficacy in treatment-resistant tumors. This review provides an overview of ongoing clinical trials focusing on combination therapies employing epi-drugs for breast cancer treatment and summarizes the latest nano-based targeted delivery approaches for epi-drugs. Moreover, it highlights the current limitations and obstacles associated with applying these experimental strategies in the clinics.

9.
J Nanobiotechnology ; 17(1): 71, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31133019

RESUMO

The incidence of lung cancer continues to rise worldwide. Because the aggressive metastasis of lung cancer cells is the major drawback of successful therapies, the crucial challenge of modern nanomedicine is to develop diagnostic tools to map the molecular mechanisms of metastasis in lung cancer patients. In recent years, microfluidic platforms have been given much attention as tools for novel point-of-care diagnostic, an important aspect being the reconstruction of the body organs and tissues mimicking the in vivo conditions in one simple microdevice. Herein, we present the first comprehensive overview of the microfluidic systems used as innovative tools in the studies of lung cancer metastasis including single cancer cell analysis, endothelial transmigration, distant niches migration and finally neoangiogenesis. The application of the microfluidic systems to study the intercellular crosstalk between lung cancer cells and surrounding tumor microenvironment and the connection with multiple molecular signals coming from the external cellular matrix are discussed. We also focus on recent breakthrough technologies regarding lab-on-chip devices that serve as tools for detecting circulating lung cancer cells. The superiority of microfluidic systems over traditional in vitro cell-based assays with regard to modern nanosafety studies and new cancer drug design and discovery is also addressed. Finally, the current progress and future challenges regarding printable and paper-based microfluidic devices for personalized nanomedicine are summarized.


Assuntos
Neoplasias Pulmonares/diagnóstico , Técnicas Analíticas Microfluídicas/métodos , Nanoestruturas/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Materiais Biomiméticos/química , Movimento Celular , Humanos , Dispositivos Lab-On-A-Chip , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/patologia , Técnicas Analíticas Microfluídicas/instrumentação , Nanomedicina , Nanoestruturas/efeitos adversos , Metástase Neoplásica , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Nanomedicina Teranóstica , Microambiente Tumoral
10.
J Biol Chem ; 292(34): 14092-14107, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28637871

RESUMO

Tyrosine hydroxylase (TH) catalyzes the conversion of l-tyrosine into l-DOPA, which is the rate-limiting step in the synthesis of catecholamines, such as dopamine, in dopaminergergic neurons. Low dopamine levels and death of the dopaminergic neurons are hallmarks of Parkinson's disease (PD), where α-synuclein is also a key player. TH is highly regulated, notably by phosphorylation of several Ser/Thr residues in the N-terminal tail. However, the functional role of TH phosphorylation at the Ser-31 site (THSer(P)-31) remains unclear. Here, we report that THSer(P)-31 co-distributes with the Golgi complex and synaptic-like vesicles in rat and human dopaminergic cells. We also found that the TH microsomal fraction content decreases after inhibition of cyclin-dependent kinase 5 (Cdk5) and ERK1/2. The cellular distribution of an overexpressed phospho-null mutant, TH1-S31A, was restricted to the soma of neuroblastoma cells, with decreased association with the microsomal fraction, whereas a phospho-mimic mutant, TH1-S31E, was distributed throughout the soma and neurites. TH1-S31E associated with vesicular monoamine transporter 2 (VMAT2) and α-synuclein in neuroblastoma cells, and endogenous THSer(P)-31 was detected in VMAT2- and α-synuclein-immunoprecipitated mouse brain samples. Microtubule disruption or co-transfection with α-synuclein A53T, a PD-associated mutation, caused TH1-S31E accumulation in the cell soma. Our results indicate that Ser-31 phosphorylation may regulate TH subcellular localization by enabling its transport along microtubules, notably toward the projection terminals. These findings disclose a new mechanism of TH regulation by phosphorylation and reveal its interaction with key players in PD, opening up new research avenues for better understanding dopamine synthesis in physiological and pathological states.


Assuntos
Neurônios Dopaminérgicos/enzimologia , Complexo de Golgi/enzimologia , Microtúbulos/enzimologia , Processamento de Proteína Pós-Traducional , Serina/metabolismo , Vesículas Sinápticas/enzimologia , Tirosina 3-Mono-Oxigenase/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Microtúbulos/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Transporte Proteico , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Vesículas Sinápticas/metabolismo , Tirosina 3-Mono-Oxigenase/genética
12.
Sci Rep ; 5: 12879, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26271723

RESUMO

Contact-dependent intercellular transfer (codeIT) of cellular constituents can have functional consequences for recipient cells, such as enhanced survival and drug resistance. Pathogenic viruses, prions and bacteria can also utilize this mechanism to spread to adjacent cells and potentially evade immune detection. However, little is known about the molecular mechanism underlying this intercellular transfer process. Here, we present a novel microscopy-based screening method to identify regulators and cargo of codeIT. Single donor cells, carrying fluorescently labelled endocytic organelles or proteins, are co-cultured with excess acceptor cells. CodeIT is quantified by confocal microscopy and image analysis in 3D, preserving spatial information. An siRNA-based screening using this method revealed the involvement of several myosins and small GTPases as codeIT regulators. Our data indicates that cellular protrusions and tubular recycling endosomes are important for codeIT. We automated image acquisition and analysis to facilitate large-scale chemical and genetic screening efforts to identify key regulators of codeIT.


Assuntos
Comunicação Celular/fisiologia , Membrana Celular/fisiologia , GTP Fosfo-Hidrolases/metabolismo , Junções Intercelulares/fisiologia , Microscopia Confocal/métodos , Miosinas/metabolismo , Membrana Celular/ultraestrutura , Rastreamento de Células/métodos , Células HeLa , Humanos , Dispositivos Lab-On-A-Chip , Imagem Molecular/métodos
13.
Biomicrofluidics ; 6(2): 24128-241289, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23750189

RESUMO

The bystander effect in cancer therapy is the inhibition or killing of tumor cells that are adjacent to those directly affected by the agent used for treatment. In the case of chemotherapy, little is known as to how much and by which mechanisms bystander effects contribute to the elimination of tumor cells. This is mainly due to the difficulty to distinguish between targeted and bystander cells since both are exposed to the pharmaceutical compound. We here studied the interaction of tamoxifen-treated human breast cancer MCF-7 cells with their neighboring counterparts by exploiting laminar flow patterning in a microfluidic chip to ensure selective drug delivery. The spatio-temporal evolution of the bystander response in non-targeted cells was analyzed by measuring the mitochondrial membrane potential under conditions of free diffusion. Our data show that the bystander response is detectable as early as 1 hour after drug treatment and reached effective distances of at least 2.8 mm. Furthermore, the bystander effect was merely dependent on diffusible factors rather than cell contact-dependent signaling. Taken together, our study illustrates that this microfluidic approach is a promising tool for screening and optimization of putative chemotherapeutic drugs to maximize the bystander response in cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...