Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IBRO Neurosci Rep ; 13: 15-21, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35707766

RESUMO

Ischemic stroke frequently causes motor impairments. Despite exercise can improve motor outcomes, many stroke survivors remain life-long disabled. Understanding the mechanisms associated with motor recovery after a stroke is necessary to develop treatments. Here, we show that endogenous DA transmission is required for optimal motor skill recovery following photothrombotic stroke in rats. Blockade of dopamine D1 and D2 receptors impaired the recovery of a forelimb reaching task and decreased the rats' motivation to complete full training sessions. Our data indicate that dopamine transmission is important to drive motor rehabilitation after stroke through motivational aspects and ultimately suggest that augmented motivation and reward feedback could be an interesting strategy to increase the effectiveness or rehabilitation.

2.
PLoS One ; 10(5): e0124986, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25938462

RESUMO

Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA), leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC) activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease.


Assuntos
Dopamina/farmacologia , Aprendizagem/efeitos dos fármacos , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Fosfolipases Tipo C/metabolismo , Animais , Antagonistas de Dopamina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Córtex Motor/efeitos dos fármacos , Destreza Motora/efeitos dos fármacos , Ratos Long-Evans , Receptores Dopaminérgicos/metabolismo , Transmissão Sináptica/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 110(16): 6583-8, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23576723

RESUMO

We have generated a transgenic rat model using RNAi and used it to study the role of the membrane protein Nogo-A in synaptic plasticity and cognition. The membrane protein Nogo-A is expressed in CNS oligodendrocytes and subpopulations of neurons, and it is known to suppress neurite growth and regeneration. The constitutively expressed polymerase II-driven transgene was composed of a microRNA-targeting Nogo-A placed into an intron preceding the coding sequence for EGFP, thus quantitatively labeling cells according to intracellular microRNA expression. The transgenic microRNA in vivo efficiently reduced the concentration of Nogo-A mRNA and protein preferentially in neurons. The resulting significant increase in long-term potentiation in both hippocampus and motor cortex indicates a repressor function of Nogo-A in synaptic plasticity. The transgenic rats exhibited prominent schizophrenia-like behavioral phenotypes, such as perseveration, disrupted prepulse inhibition, and strong withdrawal from social interactions. This fast and efficient microRNA-mediated knockdown provides a way to silence gene expression in vivo in transgenic rats and shows a role of Nogo-A in regulating higher cognitive brain functions.


Assuntos
Cognição/fisiologia , Regulação da Expressão Gênica/fisiologia , MicroRNAs/farmacologia , Proteínas da Mielina/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Potenciação de Longa Duração/fisiologia , Proteínas Nogo , Interferência de RNA , Ratos , Ratos Transgênicos , Transgenes/genética
4.
PLoS One ; 4(9): e7082, 2009 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-19759902

RESUMO

Preliminary evidence indicates that dopamine given by mouth facilitates the learning of motor skills and improves the recovery of movement after stroke. The mechanism of these phenomena is unknown. Here, we describe a mechanism by demonstrating in rat that dopaminergic terminals and receptors in primary motor cortex (M1) enable motor skill learning and enhance M1 synaptic plasticity. Elimination of dopaminergic terminals in M1 specifically impaired motor skill acquisition, which was restored upon DA substitution. Execution of a previously acquired skill was unaffected. Reversible blockade of M1 D1 and D2 receptors temporarily impaired skill acquisition but not execution, and reduced long-term potentiation (LTP) within M1, a form of synaptic plasticity critically involved in skill learning. These findings identify a behavioral and functional role of dopaminergic signaling in M1. DA in M1 optimizes the learning of a novel motor skill.


Assuntos
Dopamina/metabolismo , Aprendizagem/fisiologia , Córtex Motor/metabolismo , Plasticidade Neuronal/fisiologia , Animais , Imuno-Histoquímica/métodos , Potenciação de Longa Duração/fisiologia , Masculino , Mesencéfalo/metabolismo , Modelos Biológicos , Destreza Motora/fisiologia , Ratos , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...