Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinspir Biomim ; 16(5)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34102615

RESUMO

Multi-junction solar cells constitute the main source of power for space applications. However, exposure of solar cells to the space radiation environment significantly degrades their performance across the mission lifetime. Here, we seek to improve the radiation hardness of the triple junction solar cell, GaInP/Ga(In)As/Ge, by decreasing the thickness of the more sensitive middle junction. Thin junctions facilitate the collection of minority carriers and show slower degradation due to defects. However, thinning the junction decreases the absorption, and consequently, the expected photocurrent. To compensate for this loss, we examined two bioinspired surface patterns that exhibit anti-reflective and light-trapping properties: (a) the moth-eye structure which enables vision in poorly illuminated environments and (b) the patterns of the hard cell of a unicellular photosynthetic micro-alga, the diatoms. We parametrize and optimize the biomimetic structures, aiming to maximize the absorbed light by the solar cell while achieving significant reduction in the middle junction thickness. The density of the radiation-induced defects is independent of the junction thickness, as we demonstrate using Monte Carlo simulations, allowing the direct comparison of different combinations of middle junction thicknesses and light trapping structures. We incorporate the radiation effects into the solar cell model as a decrease in minority carrier lifetime and an increase in surface recombination velocity, and we quantify the gain in efficiency for different combinations of junction thickness and the light-trapping structure at equal radiation damage. Solar cells with thin junctions compensated by the light-trapping structures offer a promising approach to improve solar cell radiation hardness and robustness, with up to 2% higher end-of-life efficiency than the commonly used configuration at high radiation exposure.


Assuntos
Fontes de Energia Elétrica , Nanoestruturas , Desenho de Equipamento , Luz , Espalhamento de Radiação
2.
iScience ; 23(10): 101634, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33103074

RESUMO

The efficiency of photovoltaic modules in the field is generally lower than the efficiency under standard testing conditions due to temperature and spectral effects. Using the latest spectral dataset available from the National Solar Radiation Database, we report spectral correction factors ranging from -2% to 1.3% of the produced energy for silicon modules depending on location and collector geometry. We find that spectral effects favor trackers if silicon modules are used, but favor a fixed tilt instead if perovskites or CdTe are used. In high-irradiance locations, the energy yield advantage of silicon-based trackers is underestimated by 0.4% if spectral sensitivity effects are neglected. As the photovoltaic market grows to a multi-terawatt size, these seemingly small effects are expected to have an economic impact equivalent to tens of billions of dollars in the next few decades, far outweighting the cost of the required research effort.

3.
Sci Rep ; 6: 28669, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27339390

RESUMO

Electrical contacts on the top surface of solar cells and light emitting diodes cause shadow losses. The phenomenon of extraordinary optical transmission through arrays of subwavelength holes suggests the possibility of engineering such contacts to reduce the shadow using plasmonics, but resonance effects occur only at specific wavelengths. Here we describe instead a broadband effect of enhanced light transmission through arrays of subwavelength metallic wires, due to the fact that, in the absence of resonances, metal wires asymptotically tend to invisibility in the small size limit regardless of the fraction of the device area taken up by the contacts. The effect occurs for wires more than an order of magnitude thicker than the transparency limit for metal thin films. Finite difference in time domain calculations predict that it is possible to have high cloaking efficiencies in a broadband wavelength range, and we experimentally demonstrate contact shadow losses less than half of the geometric shadow.

4.
Nano Lett ; 15(1): 224-8, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25490236

RESUMO

We demonstrate a new class of semiconductor device: the optically triggered infrared photodetector (OTIP). This photodetector is based on a new physical principle that allows the detection of infrared light to be switched ON and OFF by means of an external light. Our experimental device, fabricated using InAs/AlGaAs quantum-dot technology, demonstrates normal incidence infrared detection in the 2-6 µm range. The detection is optically triggered by a 590 nm light-emitting diode. Furthermore, the detection gain is achieved in our device without an increase of the noise level. The novel characteristics of OTIPs open up new possibilities for third generation infrared imaging systems ( Rogalski, A.; Antoszewski, J.; Faraone, L. J. Appl. Phys. 2009, 105 (9), 091101).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...