Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36992398

RESUMO

Wheat dwarf virus (WDV) is one of the most important pathogens of cereal crops worldwide. To understand the molecular mechanism of resistance, here we investigated the comparative transcriptome of wheat genotypes with different levels of resistance (Svitava and Fengyou 3) and susceptibility (Akteur) to WDV. We found a significantly higher number of differentially expressed transcripts (DETs) in the susceptible genotype than in the resistant one (e.g., Svitava). The number of downregulated transcripts was also higher in the susceptible genotype than in the resistant one (Svitava) and the opposite was true for the upregulated transcripts. Further functional analysis of gene ontology (GO) enrichment identified a total of 114 GO terms for the DETs. Of these, 64 biological processes, 28 cellular components and 22 molecular function GO terms were significantly enriched. A few of these genes appear to have a specific expression pattern related to resistance or susceptibility to WDV infection. Validation of the expression pattern by RT-qPCR showed that glycosyltransferase was significantly downregulated in the susceptible genotype compared to the resistant genotypes after WDV infection, while CYCLIN-T1-3, a regulator of CDK kinases (cyclin-dependent kinase), was upregulated. On the other hand, the expression pattern of the transcription factor (TF) MYB (TraesCS4B02G174600.2; myeloblastosis domain of transcription factor) was downregulated by WDV infection in the resistant genotypes compared to the susceptible genotype, while a large number of TFs belonging to 54 TF families were differentially expressed due to WDV infection. In addition, two transcripts (TraesCS7A02G341400.1 and TraesCS3B02G239900.1) were upregulated with uncharacterised proteins involved in transport and regulation of cell growth, respectively. Altogether, our findings showed a clear gene expression profile associated with resistance or susceptibility of wheat to WDV. In future studies, we will explore the regulatory network within the same experiment context. This knowledge will broaden not only the future for the development of virus-resistant wheat genotypes but also the future of genetic improvement of cereals for resilience and WDV-resistance breeding.


Assuntos
Transcriptoma , Triticum , Humanos , Triticum/genética , Melhoramento Vegetal , Genótipo , Doenças das Plantas/genética
2.
Plant Dis ; 93(11): 1209-1213, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30754579

RESUMO

The tritimovirus Wheat streak mosaic virus (WSMV) is widespread throughout the world and represents a severe threat to cereal crop production. To increase knowledge of genetic diversity of WSMV in Europe, until now scarce, capsid protein (CP) sequences of several Czech, French, Italian, Slovak, and Turkish isolates have been determined. A multiple alignment of CP nucleotide sequences using available WSMV sequences revealed only limited sequence variation among 3 previously sequenced European isolates and the 14 European isolates sequenced in this study. Moreover, these isolates were characterized by an identical 3-nucleotide deletion, resulting in the lack of the Gly2761 codon within the CP region of the polyprotein. The results indicate that this monophyletic group of isolates (designated as WSMV-ΔE) is common and widely dispersed throughout the European continent. The close relationship of WSMV-ΔE isolates implies a single common ancestor and, presumably, subsequent dispersal throughout Europe from a single focus. We developed two simple assays for specific and accurate detection of WSMV-ΔE isolates. First, a conserved ClaI restriction site in the core CP gene sequence unique to WSMV-ΔE isolates was used for restriction fragment length polymorphism analysis of amplified polymerase chain reaction (PCR) products. Second, the conserved and specific codon gap in WSMV-ΔE sequences was used as a target to design specific primers functional in one-step reverse-transcription PCR detection of WSMV-ΔE isolates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...