Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2740: 155-168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393475

RESUMO

Cell cycle is an ordered sequence of events that occur in a cell preparing for cell division . The cell cycle is a four-stage process in which the cell increases in size, copies its DNA , prepares to divide, and divides. All these stages require a coordination of signaling pathways as well as adequate levels of energy and building blocks. These specific signaling and metabolic switches are tightly orchestrated in order for the cell cycle to occur properly. In this book chapter, we will provide information on the basis of metabolism and cell cycle interplay, and we will finish by an unexhaustive list of metabolomics approaches available to study the reciprocal control of metabolism and cell cycle.


Assuntos
Metabolômica , Transdução de Sinais , Ciclo Celular , Divisão Celular , DNA
2.
Cancer Res ; 84(10): 1570-1582, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417134

RESUMO

Clear cell renal cell carcinoma (ccRCC) incidence has risen steadily over the last decade. Elevated lipid uptake and storage is required for ccRCC cell viability. As stored cholesterol is the most abundant component in ccRCC intracellular lipid droplets, it may also play an important role in ccRCC cellular homeostasis. In support of this hypothesis, ccRCC cells acquire exogenous cholesterol through the high-density lipoprotein receptor SCARB1, inhibition or suppression of which induces apoptosis. Here, we showed that elevated expression of 3 beta-hydroxy steroid dehydrogenase type 7 (HSD3B7), which metabolizes cholesterol-derived oxysterols in the bile acid biosynthetic pathway, is also essential for ccRCC cell survival. Development of an HSD3B7 enzymatic assay and screening for small-molecule inhibitors uncovered the compound celastrol as a potent HSD3B7 inhibitor with low micromolar activity. Repressing HSD3B7 expression genetically or treating ccRCC cells with celastrol resulted in toxic oxysterol accumulation, impaired proliferation, and increased apoptosis in vitro and in vivo. These data demonstrate that bile acid synthesis regulates cholesterol homeostasis in ccRCC and identifies HSD3B7 as a plausible therapeutic target. SIGNIFICANCE: The bile acid biosynthetic enzyme HSD3B7 is essential for ccRCC cell survival and can be targeted to induce accumulation of cholesterol-derived oxysterols and apoptotic cell death.


Assuntos
Ácidos e Sais Biliares , Carcinoma de Células Renais , Colesterol , Homeostase , Neoplasias Renais , Humanos , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Neoplasias Renais/genética , Animais , Camundongos , Triterpenos Pentacíclicos , Linhagem Celular Tumoral , Apoptose , Proliferação de Células , Triterpenos/farmacologia , Carcinogênese/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cell Metab ; 34(8): 1151-1167.e7, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35839757

RESUMO

Hepatocellular carcinoma (HCC) is a typically fatal malignancy exhibiting genetic heterogeneity and limited therapy responses. We demonstrate here that HCCs consistently repress urea cycle gene expression and thereby become auxotrophic for exogenous arginine. Surprisingly, arginine import is uniquely dependent on the cationic amino acid transporter SLC7A1, whose inhibition slows HCC cell growth in vitro and in vivo. Moreover, arginine deprivation engages an integrated stress response that promotes HCC cell-cycle arrest and quiescence, dependent on the general control nonderepressible 2 (GCN2) kinase. Inhibiting GCN2 in arginine-deprived HCC cells promotes a senescent phenotype instead, rendering these cells vulnerable to senolytic compounds. Preclinical models confirm that combined dietary arginine deprivation, GCN2 inhibition, and senotherapy promote HCC cell apoptosis and tumor regression. These data suggest novel strategies to treat human liver cancers through targeting SLC7A1 and/or a combination of arginine restriction, inhibition of GCN2, and senolytic agents.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Arginina/metabolismo , Arginina/farmacologia , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Proteínas Serina-Treonina Quinases , Senoterapia
4.
Cancer Metab ; 10(1): 4, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123542

RESUMO

BACKGROUND: Deregulated glucose metabolism is a critical component of cancer growth and survival, clinically evident via FDG-PET imaging of enhanced glucose uptake in tumor nodules. Tumor cells utilize glucose in a variety of interconnected biochemical pathways to generate energy, anabolic precursors, and other metabolites necessary for growth. Glucagon-stimulated gluconeogenesis opposes glycolysis, potentially representing a pathway-specific strategy for targeting glucose metabolism in tumor cells. Here, we test the hypothesis of whether glucagon signaling can activate gluconeogenesis to reduce tumor proliferation in models of liver cancer. METHODS: The glucagon receptor, GCGR, was overexpressed in liver cancer cell lines consisting of a range of etiologies and genetic backgrounds. Glucagon signaling transduction was measured by cAMP ELISAs, western blots of phosphorylated PKA substrates, and qPCRs of relative mRNA expression of multiple gluconeogenic enzymes. Lastly, cell proliferation and apoptosis assays were performed to quantify the biological effect of glucagon/GCGR stimulation. RESULTS: Signaling analyses in SNU398 GCGR cells treated with glucagon revealed an increase in cAMP abundance and phosphorylation of downstream PKA substrates, including CREB. qPCR data indicated that none of the three major gluconeogenic genes, G6PC, FBP1, or PCK1, exhibit significantly higher mRNA levels in SNU398 GCGR cells when treated with glucagon; however, this could be partially increased with epigenetic inhibitors. In glucagon-treated SNU398 GCGR cells, flow cytometry analyses of apoptotic markers and growth assays reproducibly measured statistically significant reductions in cell viability. Finally, proliferation experiments employing siCREB inhibition showed no reversal of cell death in SNU398 GCGR cells treated with glucagon, indicating the effects of glucagon in this setting are independent of CREB. CONCLUSIONS: For the first time, we report a potential tumor suppressive role for glucagon/GCGR in liver cancer. Specifically, we identified a novel cell line-specific phenotype, whereby glucagon signaling can induce apoptosis via an undetermined mechanism. Future studies should explore the potential effects of glucagon in diabetic liver cancer patients.

5.
Cancer Discov ; 11(12): 3106-3125, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34244212

RESUMO

Clear cell renal cell carcinoma (ccRCC) is characterized by large intracellular lipid droplets containing free and esterified cholesterol; however, the functional significance of cholesterol accumulation in ccRCC cells is unknown. We demonstrate that, surprisingly, genes encoding cholesterol biosynthetic enzymes are repressed in ccRCC, suggesting a dependency on exogenous cholesterol. Mendelian randomization analyses based on 31,000 individuals indicate a causal link between elevated circulating high-density lipoprotein (HDL) cholesterol and ccRCC risk. Depriving ccRCC cells of either cholesterol or HDL compromises proliferation and survival in vitro and tumor growth in vivo; in contrast, elevated dietary cholesterol promotes tumor growth. Scavenger Receptor B1 (SCARB1) is uniquely required for cholesterol import, and inhibiting SCARB1 is sufficient to cause ccRCC cell-cycle arrest, apoptosis, elevated intracellular reactive oxygen species levels, and decreased PI3K/AKT signaling. Collectively, we reveal a cholesterol dependency in ccRCC and implicate SCARB1 as a novel therapeutic target for treating kidney cancer. SIGNIFICANCE: We demonstrate that ccRCC cells are auxotrophic for exogenous cholesterol to maintain PI3K/AKT signaling pathway and ROS homeostasis. Blocking cholesterol import through the HDL transporter SCARB1 compromises ccRCC cell survival and tumor growth, suggesting a novel pharmacologic target for this disease. This article is highlighted in the In This Issue feature, p. 2945.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Colesterol/uso terapêutico , Humanos , Neoplasias Renais/patologia , Fosfatidilinositol 3-Quinases/metabolismo
6.
Nat Metab ; 3(3): 327-336, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33758423

RESUMO

Glycogen accumulation is a highly consistent, distinguishable characteristic of clear cell renal cell carcinoma (ccRCC)1. While elevated glycogen pools might be advantageous for ccRCC cells in nutrient-deprived microenvironments to sustain tumour viability, data supporting a biological role for glycogen in ccRCC are lacking. Here, we demonstrate that glycogen metabolism is not required for ccRCC proliferation in vitro nor xenograft tumour growth in vivo. Disruption of glycogen synthesis by CRISPR-mediated knockout of glycogen synthase 1 (GYS1) has no effect on proliferation in multiple cell lines, regardless of glucose concentrations or oxygen levels. Similarly, prevention of glycogen breakdown by deletion or pharmacological inhibition of glycogen phosphorylase B (PYGB) and L (PYGL) has no impact on cell viability under any condition tested. Lastly, in vivo xenograft experiments using the ccRCC cell line, UMRC2, reveal no substantial changes in tumour size or volume when glycogen metabolism is altered, largely mimicking the phenotype of our in vitro observations. Our findings suggest that glycogen build-up in established ccRCC tumour cells is likely to be a secondary, and apparently dispensable, consequence of constitutively active hypoxia-inducible factor 1-alpha (HIF-1α) signalling.


Assuntos
Carcinoma de Células Renais/metabolismo , Glicogênio/metabolismo , Neoplasias Renais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase/genética , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Microambiente Tumoral
7.
Sci Transl Med ; 12(547)2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522803

RESUMO

Well-differentiated and dedifferentiated liposarcomas (LPSs) are characterized by a systematic amplification of the MDM2 oncogene, which encodes a key negative regulator of the p53 pathway. The molecular mechanisms underlying MDM2 overexpression while sparing wild-type p53 in LPS remain poorly understood. Here, we show that the p53-independent metabolic functions of chromatin-bound MDM2 are exacerbated in LPS and mediate an addiction to serine metabolism that sustains nucleotide synthesis and tumor growth. Treatment of LPS cells with Nutlin-3A, a pharmacological inhibitor of the MDM2-p53 interaction, stabilized p53 but unexpectedly enhanced MDM2-mediated control of serine metabolism by increasing its recruitment to chromatin, likely explaining the poor clinical efficacy of this class of MDM2 inhibitors. In contrast, genetic or pharmacological inhibition of chromatin-bound MDM2 by SP141, a distinct MDM2 inhibitor triggering its degradation, or interfering with de novo serine synthesis, impaired LPS growth both in vitro and in clinically relevant patient-derived xenograft models. Our data indicate that targeting MDM2 functions in serine metabolism represents a potential therapeutic strategy for LPS.


Assuntos
Antineoplásicos , Lipossarcoma , Antineoplásicos/uso terapêutico , Humanos , Lipossarcoma/tratamento farmacológico , Lipossarcoma/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Serina/uso terapêutico , Proteína Supressora de Tumor p53/genética
8.
Nat Cell Biol ; 22(6): 728-739, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32367049

RESUMO

The crosstalk between deregulated hepatocyte metabolism and cells within the tumour microenvironment, as well as the consequent effects on liver tumorigenesis, are not completely understood. We show here that hepatocyte-specific loss of the gluconeogenic enzyme fructose 1,6-bisphosphatase 1 (FBP1) disrupts liver metabolic homeostasis and promotes tumour progression. FBP1 is universally silenced in both human and murine liver tumours. Hepatocyte-specific Fbp1 deletion results in steatosis, concomitant with activation and senescence of hepatic stellate cells (HSCs), exhibiting a senescence-associated secretory phenotype. Depleting senescent HSCs by 'senolytic' treatment with dasatinib/quercetin or ABT-263 inhibits tumour progression. We further demonstrate that FBP1-deficient hepatocytes promote HSC activation by releasing HMGB1; blocking its release with the small molecule inflachromene limits FBP1-dependent HSC activation, the subsequent development of the senescence-associated secretory phenotype and tumour progression. Collectively, these findings provide genetic evidence for FBP1 as a metabolic tumour suppressor in liver cancer and establish a critical crosstalk between hepatocyte metabolism and HSC senescence that promotes tumour growth.


Assuntos
Carcinogênese/patologia , Proliferação de Células , Senescência Celular , Frutose-Bifosfatase/fisiologia , Regulação Neoplásica da Expressão Gênica , Células Estreladas do Fígado/patologia , Neoplasias Hepáticas/patologia , Animais , Carcinogênese/metabolismo , Feminino , Células Estreladas do Fígado/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Mol Metab ; 33: 2-22, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31685430

RESUMO

BACKGROUND: The TP53 gene is one of the most commonly inactivated tumor suppressors in human cancers. p53 functions during cancer progression have been linked to a variety of transcriptional and non-transcriptional activities that lead to the tight control of cell proliferation, senescence, DNA repair, and cell death. However, converging evidence indicates that p53 also plays a major role in metabolism in both normal and cancer cells. SCOPE OF REVIEW: We provide an overview of the current knowledge on the metabolic activities of wild type (WT) p53 and highlight some of the mechanisms by which p53 contributes to whole body energy homeostasis. We will also pinpoint some evidences suggesting that deregulation of p53-associated metabolic activities leads to human pathologies beyond cancer, including obesity, diabetes, liver, and cardiovascular diseases. MAJOR CONCLUSIONS: p53 is activated when cells are metabolically challenged but the origin, duration, and intensity of these stresses will dictate the outcome of the p53 response. p53 plays pivotal roles both upstream and downstream of several key metabolic regulators and is involved in multiple feedback-loops that ensure proper cellular homeostasis. The physiological roles of p53 in metabolism involve complex mechanisms of regulation implicating both cell autonomous effects as well as autocrine loops. However, the mechanisms by which p53 coordinates metabolism at the organismal level remain poorly understood. Perturbations of p53-regulated metabolic activities contribute to various metabolic disorders and are pivotal during cancer progression.


Assuntos
Metabolismo Energético/genética , Doenças Metabólicas/metabolismo , Neoplasias/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Homeostase/genética , Humanos , Doenças Metabólicas/genética , Doenças Metabólicas/patologia , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética
10.
Mol Cell ; 76(2): 220-231, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31586545

RESUMO

Deregulated cell proliferation is an established feature of cancer, and altered tumor metabolism has witnessed renewed interest over the past decade, including the study of how cancer cells rewire metabolic pathways to renew energy sources and "building blocks" that sustain cell division. Microenvironmental oxygen, glucose, and glutamine are regarded as principal nutrients fueling tumor growth. However, hostile tumor microenvironments render O2/nutrient supplies chronically insufficient for increased proliferation rates, forcing cancer cells to develop strategies for opportunistic modes of nutrient acquisition. Recent work shows that cancer cells overcome this nutrient scarcity by scavenging other substrates, such as proteins and lipids, or utilizing adaptive metabolic pathways. As such, reprogramming lipid metabolism plays important roles in providing energy, macromolecules for membrane synthesis, and lipid-mediated signaling during cancer progression. In this review, we highlight more recently appreciated roles for lipids, particularly cholesterol and its derivatives, in cancer cell metabolism within intrinsically harsh tumor microenvironments.


Assuntos
Proliferação de Células , Colesterol/metabolismo , Metabolismo Energético , Neoplasias/metabolismo , Animais , Microbioma Gastrointestinal , Humanos , Neoplasias/imunologia , Neoplasias/microbiologia , Neoplasias/patologia , Obesidade/metabolismo , Obesidade/patologia , Transdução de Sinais , Evasão Tumoral , Hipóxia Tumoral , Microambiente Tumoral
11.
Mol Cancer Res ; 17(9): 1881-1892, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31151999

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer. While the localized form of this disease can be treated surgically, advanced and metastatic stages are resistant to chemotherapies. Although more innovative treatments, such as targeted or immune-based therapies, exist, the need for new therapeutic options remains. ccRCC presents unique metabolic signatures and multiple studies have reported a significant increase in levels of reduced glutathione (GSH) and its precursors in ccRCC tumor samples compared with normal kidney tissues. These observations led us to investigate the effects of blocking the GSH pathway, particularly the gamma-glutamyltransferase 1 (GGT1) enzyme, in multiple ccRCC cell lines. In this study, we provide in vitro and in vivo evidence that GGT1/GSH pathway inhibition impacts ccRCC cell growth, through increased cell-cycle arrest. Of note, GGT1 inhibition also impairs ccRCC cell migration. Finally, pharmacologic GSH pathway inhibition decreases ccRCC cell proliferation and increases sensitivity to standard chemotherapy. Our results suggest that GGT1/GSH pathway inhibition represents a new strategy to overcome ccRCC chemoresistance. IMPLICATIONS: GGT1/GSH pathway inhibition represents a promising therapeutic strategy to overcome chemoresistance and inhibit progression of ccRCC tumors.


Assuntos
Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , gama-Glutamiltransferase/genética , gama-Glutamiltransferase/metabolismo , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Glutationa/metabolismo , Humanos , Neoplasias Renais/genética , Transdução de Sinais , Regulação para Cima
13.
Mol Cell ; 69(4): 594-609.e8, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29452639

RESUMO

Accumulating evidence indicates that the MDM2 oncoprotein promotes tumorigenesis beyond its canonical negative effects on the p53 tumor suppressor, but these p53-independent functions remain poorly understood. Here, we show that a fraction of endogenous MDM2 is actively imported in mitochondria to control respiration and mitochondrial dynamics independently of p53. Mitochondrial MDM2 represses the transcription of NADH-dehydrogenase 6 (MT-ND6) in vitro and in vivo, impinging on respiratory complex I activity and enhancing mitochondrial ROS production. Recruitment of MDM2 to mitochondria increases during oxidative stress and hypoxia. Accordingly, mice lacking MDM2 in skeletal muscles exhibit higher MT-ND6 levels, enhanced complex I activity, and increased muscular endurance in mild hypoxic conditions. Furthermore, increased mitochondrial MDM2 levels enhance the migratory and invasive properties of cancer cells. Collectively, these data uncover a previously unsuspected function of the MDM2 oncoprotein in mitochondria that play critical roles in skeletal muscle physiology and may contribute to tumor progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Transformação Celular Neoplásica/patologia , Complexo I de Transporte de Elétrons/metabolismo , Regulação Neoplásica da Expressão Gênica , Mitocôndrias/patologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Movimento Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Complexo I de Transporte de Elétrons/genética , Genoma Mitocondrial , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Invasividade Neoplásica , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-mdm2/genética , Transdução de Sinais , Transcrição Gênica , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Mol Cell Oncol ; 3(5): e1210560, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27857973

RESUMO

The oncoprotein MDM2 is recognized as a major negative regulator of the p53 tumor suppressor but growing evidence indicates that its oncogenic activities extend beyond p53. We show that MDM2 is recruited to chromatin independently of p53 to regulate a transcriptional program implicated in amino acid metabolism and redox homeostasis.

15.
Proc Natl Acad Sci U S A ; 113(39): 11004-9, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27621431

RESUMO

The multifunctional protein E4 transcription factor 1 (E4F1) is an essential regulator of epidermal stem cell (ESC) maintenance. Here, we found that E4F1 transcriptionally regulates a metabolic program involved in pyruvate metabolism that is required to maintain skin homeostasis. E4F1 deficiency in basal keratinocytes resulted in deregulated expression of dihydrolipoamide acetyltransferase (Dlat), a gene encoding the E2 subunit of the mitochondrial pyruvate dehydrogenase (PDH) complex. Accordingly, E4f1 knock-out (KO) keratinocytes exhibited impaired PDH activity and a redirection of the glycolytic flux toward lactate production. The metabolic reprogramming of E4f1 KO keratinocytes associated with remodeling of their microenvironment and alterations of the basement membrane, led to ESC mislocalization and exhaustion of the ESC pool. ShRNA-mediated depletion of Dlat in primary keratinocytes recapitulated defects observed upon E4f1 inactivation, including increased lactate secretion, enhanced activity of extracellular matrix remodeling enzymes, and impaired clonogenic potential. Altogether, our data reveal a central role for Dlat in the metabolic program regulated by E4F1 in basal keratinocytes and illustrate the importance of PDH activity in skin homeostasis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Homeostase , Proteínas Mitocondriais/metabolismo , Pele/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Recém-Nascidos , Membrana Basal/metabolismo , Adesão Celular , Células Cultivadas , Microambiente Celular , Proteínas de Ligação a DNA/deficiência , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/genética , Células Epidérmicas , Epiderme/metabolismo , Regulação da Expressão Gênica , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos Knockout , Proteínas Mitocondriais/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Piruvatos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras , Células-Tronco/metabolismo , Fatores de Transcrição/deficiência , Ubiquitina-Proteína Ligases
16.
Mol Cell ; 62(6): 890-902, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27264869

RESUMO

The mouse double minute 2 (MDM2) oncoprotein is recognized as a major negative regulator of the p53 tumor suppressor, but growing evidence indicates that its oncogenic activities extend beyond p53. Here, we show that MDM2 is recruited to chromatin independently of p53 to regulate a transcriptional program implicated in amino acid metabolism and redox homeostasis. Identification of MDM2 target genes at the whole-genome level highlights an important role for ATF3/4 transcription factors in tethering MDM2 to chromatin. MDM2 recruitment to chromatin is a tightly regulated process that occurs during oxidative stress and serine/glycine deprivation and is modulated by the pyruvate kinase M2 (PKM2) metabolic enzyme. Depletion of endogenous MDM2 in p53-deficient cells impairs serine/glycine metabolism, the NAD(+)/NADH ratio, and glutathione (GSH) recycling, impacting their redox state and tumorigenic potential. Collectively, our data illustrate a previously unsuspected function of chromatin-bound MDM2 in cancer cell metabolism.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Serina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proliferação de Células , Cromatina/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Glicina/metabolismo , Células HCT116 , Homeostase , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Nus , Mutação , Oxirredução , Estresse Oxidativo , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/genética , Interferência de RNA , Hormônios Tireóideos/genética , Hormônios Tireóideos/metabolismo , Fatores de Tempo , Transcrição Gênica , Transfecção , Carga Tumoral , Proteína Supressora de Tumor p53/genética , Proteínas de Ligação a Hormônio da Tireoide
17.
J Exp Med ; 213(4): 483-97, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26951332

RESUMO

Acute myeloid leukemia (AML) is characterized by the accumulation of malignant blasts with impaired differentiation programs caused by recurrent mutations, such as the isocitrate dehydrogenase (IDH) mutations found in 15% of AML patients. These mutations result in the production of the oncometabolite (R)-2-hydroxyglutarate (2-HG), leading to a hypermethylation phenotype that dysregulates hematopoietic differentiation. In this study, we identified mutant R132H IDH1-specific gene signatures regulated by key transcription factors, particularly CEBPα, involved in myeloid differentiation and retinoid responsiveness. We show that treatment with all-trans retinoic acid (ATRA) at clinically achievable doses markedly enhanced terminal granulocytic differentiation in AML cell lines, primary patient samples, and a xenograft mouse model carrying mutant IDH1. Moreover, treatment with a cell-permeable form of 2-HG sensitized wild-type IDH1 AML cells to ATRA-induced myeloid differentiation, whereas inhibition of 2-HG production significantly reduced ATRA effects in mutant IDH1 cells. ATRA treatment specifically decreased cell viability and induced apoptosis of mutant IDH1 blasts in vitro. ATRA also reduced tumor burden of mutant IDH1 AML cells xenografted in NOD-Scid-IL2rγ(null)mice and markedly increased overall survival, revealing a potent antileukemic effect of ATRA in the presence of IDH1 mutation. This therapeutic strategy holds promise for this AML patient subgroup in future clinical studies.


Assuntos
Crise Blástica/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Isocitrato Desidrogenase/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação de Sentido Incorreto , Proteínas de Neoplasias/metabolismo , Tretinoína/farmacologia , Substituição de Aminoácidos , Animais , Crise Blástica/enzimologia , Crise Blástica/genética , Crise Blástica/patologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular/genética , Sobrevivência Celular , Feminino , Granulócitos/metabolismo , Granulócitos/patologia , Células HL-60 , Humanos , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Nus , Proteínas de Neoplasias/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...