Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Eng Online ; 14: 110, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26611470

RESUMO

BACKGROUND: Phase contrast magnetic resonance imaging (PC-MRI) is used clinically for quantitative assessment of cardiovascular flow and function, as it is capable of providing directly-measured 3D velocity maps. Alternatively, vascular flow can be estimated from model-based computation fluid dynamics (CFD) calculations. CFD provides arbitrarily high resolution, but its accuracy hinges on model assumptions, while velocity fields measured with PC-MRI generally do not satisfy the equations of fluid dynamics, provide limited resolution, and suffer from partial volume effects. The purpose of this study is to develop a proof-of-concept numerical procedure for constructing a simulated flow field that is influenced by both direct PC-MRI measurements and a fluid physics model, thereby taking advantage of both the accuracy of PC-MRI and the high spatial resolution of CFD. The use of the proposed approach in regularizing 3D flow fields is evaluated. METHODS: The proposed algorithm incorporates both a Newtonian fluid physics model and a linear PC-MRI signal model. The model equations are solved numerically using a modified CFD algorithm. The numerical solution corresponds to the optimal solution of a generalized Tikhonov regularization, which provides a flow field that satisfies the flow physics equations, while being close enough to the measured PC-MRI velocity profile. The feasibility of the proposed approach is demonstrated on data from the carotid bifurcation of one healthy volunteer, and also from a pulsatile carotid flow phantom. RESULTS: The proposed solver produces flow fields that are in better agreement with direct PC-MRI measurements than CFD alone, and converges faster, while closely satisfying the fluid dynamics equations. For the implementation that provided the best results, the signal-to-error ratio (with respect to the PC-MRI measurements) in the phantom experiment was 6.56 dB higher than that of conventional CFD; in the in vivo experiment, it was 2.15 dB higher. CONCLUSIONS: The proposed approach allows partial or complete measurements to be incorporated into a modified CFD solver, for improving the accuracy of the resulting flow fields estimates. This can be used for reducing scan time, increasing the spatial resolution, and/or denoising the PC-MRI measurements.


Assuntos
Circulação Sanguínea , Simulação por Computador , Hidrodinâmica , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Algoritmos , Humanos , Modelos Biológicos , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...