Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1062, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316774

RESUMO

The electronic structure defines the properties of graphene-based nanomaterials. Scanning tunneling microscopy/spectroscopy (STM/STS) experiments on graphene nanoribbons (GNRs), nanographenes, and nanoporous graphene (NPG) often determine an apparent electronic orbital confinement into the edges and nanopores, leading to dubious interpretations such as image potential states or super-atom molecular orbitals. We show that these measurements are subject to a wave function decay into the vacuum that masks the undisturbed electronic orbital shape. We use Au(111)-supported semiconducting gulf-type GNRs and NPGs as model systems fostering frontier orbitals that appear confined along the edges and nanopores in STS measurements. DFT calculations confirm that these states originate from valence and conduction bands. The deceptive electronic orbital confinement observed is caused by a loss of Fourier components, corresponding to states of high momentum. This effect can be generalized to other 1D and 2D carbon-based nanoarchitectures and is important for their use in catalysis and sensing applications.

2.
Angew Chem Int Ed Engl ; 63(15): e202319162, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38235942

RESUMO

Natural products are attractive components to tailor environmentally friendly advanced new materials. We present surface-confined metallosupramolecular engineering of coordination polymers using natural dyes as molecular building blocks: indigo and the related Tyrian purple. Both building blocks yield identical, well-defined coordination polymers composed of (1 dehydroindigo : 1 Fe) repeat units on two different silver single crystal surfaces. These polymers are characterized atomically by submolecular resolution scanning tunnelling microscopy, bond-resolving atomic force microscopy and X-ray photoelectron spectroscopy. On Ag(100) and on Ag(111), the trans configuration of dehydroindigo results in N,O-chelation in the polymer chains. On the more inert Ag(111) surface, the molecules additionally undergo thermally induced isomerization from the trans to the cis configuration and afford N,N- plus O,O-chelation. Density functional theory calculations confirm that the coordination polymers of the cis-isomers on Ag(111) and of the trans-isomers on Ag(100) are energetically favoured. Our results demonstrate post-synthetic linker isomerization in interfacial metal-organic nanosystems.

3.
Nat Chem ; 15(12): 1765-1772, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37723257

RESUMO

Aromaticity is an established and widely used concept for the prediction of the reactivity of organic molecules. However, its role remains largely unexplored in on-surface chemistry, where the interaction with the substrate can alter the electronic and geometric structure of the adsorbates. Here we investigate how aromaticity affects the reactivity of alkyne-substituted porphyrin molecules in cyclization and coupling reactions on a Au(111) surface. We examine and quantify the regioselectivity in the reactions by scanning tunnelling microscopy and bond-resolved atomic force microscopy at the single-molecule level. Our experiments show a substantially lower reactivity of carbon atoms that are stabilized by the aromatic diaza[18]annulene pathway of free-base porphyrins. The results are corroborated by density functional theory calculations, which show a direct correlation between aromaticity and thermodynamic stability of the reaction products. These insights are helpful to understand, and in turn design, reactions with aromatic species in on-surface chemistry and heterogeneous catalysis.

4.
Sci Adv ; 9(37): eadj1611, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713496

RESUMO

Thermoelectric materials seamlessly convert thermal into electrical energy, making them promising for power generation and cooling applications. Although historically the thermoelectric effect was first discovered in metals, state-of-the-art research focuses on semiconductors. Here, we discover unprecedented thermoelectric performance in metals and realize ultrahigh power factors up to 34 mW m-1 K-2 in binary NixAu1-x alloys, more than twice larger than in any bulk material above room temperature, reaching zTmax ∼ 0.5. In metallic NixAu1-x alloys, large Seebeck coefficients originate from electron-hole selective scattering of Au s electrons into more localized Ni d states. This intrinsic energy filtering effect owing to the unique band structure yields a strongly energy-dependent carrier mobility. While the metastable nature of the Ni-Au system as well as the high cost of Au pose some constraints for practical applications, our work challenges the common belief that good metals are bad thermoelectrics and presents an auspicious route toward high thermoelectric performance exploiting interband scattering.

5.
Angew Chem Int Ed Engl ; 62(19): e202218211, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36857418

RESUMO

Bicyclo[1.1.1]pentane (BCP) motifs are of growing importance to the pharmaceutical industry as sp3 -rich bioisosteres of benzene rings and as molecular building blocks in materials science. Herein we explore the behavior of 1,3-disubstituted BCP moieties on metal surfaces by combining low-temperature scanning tunneling microscopy / non-contact atomic force microscopy studies with density functional theory modeling. We examine the configuration of individual BCP-containing precursors on Au(111), their supramolecular assembly and thermally activated dehalogenative coupling reactions, affording polymeric chains with incorporated electronically isolating units. Our studies not only provide the first sub-molecular insights of the BCP scaffold behavior on surfaces, but also extend the potential application of BCP derivatives towards integration in custom-designed surface architectures.

6.
Nat Commun ; 14(1): 1255, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878914

RESUMO

Belonging to the enyne family, enetriynes comprise a distinct electron-rich all-carbon bonding scheme. However, the lack of convenient synthesis protocols limits the associated application potential within, e.g., biochemistry and materials science. Herein we introduce a pathway for highly selective enetriyne formation via tetramerization of terminal alkynes on a Ag(100) surface. Taking advantage of a directing hydroxyl group, we steer molecular assembly and reaction processes on square lattices. Induced by O2 exposure the terminal alkyne moieties deprotonate and organometallic bis-acetylide dimer arrays evolve. Upon subsequent thermal annealing tetrameric enetriyne-bridged compounds are generated in high yield, readily self-assembling into regular networks. We combine high-resolution scanning probe microscopy, X-ray photoelectron spectroscopy and density functional theory calculations to examine the structural features, bonding characteristics and the underlying reaction mechanism. Our study introduces an integrated strategy for the precise fabrication of functional enetriyne species, thus providing access to a distinct class of highly conjugated π-system compounds.

7.
J Am Chem Soc ; 145(2): 967-977, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36580274

RESUMO

The synthesis of two-dimensionally extended polycyclic heteroatomic molecules keeps attracting considerable attention. In particular, frameworks bearing planar cyclooctatetraenes (COT) moieties can display intriguing properties, including antiaromaticity. Here, we present an on-surface chemistry route to square-type porphyrin tetramers with a central COT ring, coexisting with other oligomers. This approach employing temperature-induced dehydrogenative porphyrin homocoupling in an ultrahigh vacuum environment provides access to surface-supported, unsubstituted porphyrin tetramers that are not easily achievable by conventional synthesis means. Specifically, monomeric free-base (2H-P) and Zn-metalated (Zn-P) porphines (P) were employed to form square-type free-base and Zn-functionalized tetramers on Ag(100). An atomic-level characterization by bond-resolved atomic force microscopy and scanning tunneling microscopy and spectroscopy is provided, identifying the molecular structures. Complemented by density functional theory modeling, the electronic structure is elucidated, indeed revealing antiaromaticity induced by the COT moiety. The present study thus gives access, and insights, to a porphyrin oligomer, representing both a model system for directly fused porphyrins and a potential building block for conjugated, extended two-dimensional porphyrin sheets.


Assuntos
Porfirinas , Porfirinas/química , Estrutura Molecular , Espectroscopia de Ressonância Magnética , Microscopia de Tunelamento
8.
Nat Commun ; 13(1): 3599, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739099

RESUMO

Discovered more than 200 years ago in 1821, thermoelectricity is nowadays of global interest as it enables direct interconversion of thermal and electrical energy via the Seebeck/Peltier effect. In their seminal work, Mahan and Sofo mathematically derived the conditions for 'the best thermoelectric'-a delta-distribution-shaped electronic transport function, where charge carriers contribute to transport only in an infinitely narrow energy interval. So far, however, only approximations to this concept were expected to exist in nature. Here, we propose the Anderson transition in a narrow impurity band as a physical realisation of this seemingly unrealisable scenario. An innovative approach of continuous disorder tuning allows us to drive the Anderson transition within a single sample: variable amounts of antisite defects are introduced in a controlled fashion by thermal quenching from high temperatures. Consequently, we obtain a significant enhancement and dramatic change of the thermoelectric properties from p-type to n-type in stoichiometric Fe2VAl, which we assign to a narrow region of delocalised electrons in the energy spectrum near the Fermi energy. Based on our electronic transport and magnetisation experiments, supported by Monte-Carlo and density functional theory calculations, we present a novel strategy to enhance the performance of thermoelectric materials.

9.
Nanoscale ; 13(47): 19884-19889, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34842889

RESUMO

Porphyrin-based oligomers were synthesized from the condensation of adsorbed 4-benzaldehyde-substituted porphyrins through the formation of CC linkages, following a McMurry-type coupling scheme. Scanning tunneling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy data evidence both the dissociation of aldehyde groups and the formation of CC linkages. Our approach provides a path for the on-surface synthesis of porphyrin-based oligomers coupled by CC bridges - as a means to create functional conjugated nanostructures.

10.
Nano Lett ; 21(20): 8770-8776, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34653333

RESUMO

The spatial arrangement of adsorbates deposited onto a clean surface under vacuum typically cannot be reversibly tuned. Here we use scanning tunneling microscopy to demonstrate that molecules deposited onto graphene field-effect transistors (FETs) exhibit reversible, electrically tunable surface concentration. Continuous gate-tunable control over the surface concentration of charged F4TCNQ molecules was achieved on a graphene FET at T = 4.5K. This capability enables the precisely controlled impurity doping of graphene devices and also provides a new method for determining molecular energy level alignment based on the gate-dependence of molecular concentration. Gate-tunable molecular concentration is explained by a dynamical molecular rearrangement process that reduces total electronic energy by maintaining Fermi level pinning in the device substrate. The molecular surface concentration is fully determined by the device back-gate voltage, its geometric capacitance, and the energy difference between the graphene Dirac point and the molecular LUMO level.


Assuntos
Grafite , Capacitância Elétrica , Eletrônica , Microscopia de Tunelamento , Transistores Eletrônicos
11.
Chem Sci ; 12(38): 12806-12811, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34703567

RESUMO

The design of organometallic complexes is at the heart of modern organic chemistry and catalysis. Recently, on-surface synthesis has emerged as a disruptive paradigm to design previously precluded compounds and nanomaterials. Despite these advances, the field of organometallic chemistry on surfaces is still at its infancy. Here, we introduce a protocol to activate the inner diacetylene moieties of a molecular precursor by copper surface adatoms affording the formation of unprecedented organocopper metallacycles on Cu(111). The chemical structure of the resulting complexes is characterized by scanning probe microscopy and X-ray photoelectron spectroscopy, being complemented by density functional theory calculations and scanning probe microscopy simulations. Our results pave avenues to the engineering of organometallic compounds and steer the development of polyyne chemistry on surfaces.

12.
J Am Chem Soc ; 143(37): 15131-15138, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34472340

RESUMO

The breakdown of macrocyclic compounds is of utmost importance in manifold biological and chemical processes, usually proceeding via oxygenation-induced ring-opening reactions. Here, we introduce a surface chemical route to selectively break a prototypical porphyrin species, cleaving off one pyrrole unit and affording a tripyrrin derivative. This pathway, operational in an ultrahigh vacuum environment at moderate temperature is enabled by a distinct molecular conformation achieved via the specific interaction between the porphyrin and its copper support. We provide an atomic-level characterization of the surface-anchored tripyrrin, its reaction intermediates, and byproducts by bond-resolved atomic force microscopy, unequivocally identifying the molecular skeletons. The ring-opening is rationalized by the distortion reducing the macrocycle's stability. Our findings open a route to steer ring-opening reactions by conformational design and to study intriguing tetrapyrrole catabolite analogues on surfaces.

14.
Nat Commun ; 11(1): 1490, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198456

RESUMO

The vast potential of organic materials for electronic, optoelectronic and spintronic devices entails substantial interest in the fabrication of π-conjugated systems with tailored functionality directly at insulating interfaces. On-surface fabrication of such materials on non-metal surfaces remains to be demonstrated with high yield and selectivity. Here we present the synthesis of polyaromatic chains on metallic substrates, insulating layers, and in the solid state. Scanning probe microscopy shows the formation of azaullazine repeating units on Au(111), Ag(111), and h-BN/Cu(111), stemming from intermolecular homo-coupling via cycloaddition reactions of CN-substituted polycyclic aromatic azomethine ylide (PAMY) intermediates followed by subsequent dehydrogenation. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry demonstrates that the reaction also takes place in the solid state in the absence of any catalyst. Such intermolecular cycloaddition reactions are promising methods for direct synthesis of regioregular polyaromatic polymers on arbitrary insulating surfaces.

15.
Angew Chem Int Ed Engl ; 58(52): 18948-18956, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31671244

RESUMO

Linear modules equipped with two terminal hydroxamic acid groups act as the building block of diverse two-dimensional supramolecular motifs and patterns with room-temperature stability on the close-packed single-crystal surfaces of silver and gold, revealing a complex self-assembly scenario. By combining multiple investigation techniques (scanning tunneling microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and density functional theory calculations), we analyze the characteristics of the ordered assemblies which range from close-packed structures to polyporous networks featuring an exceptionally extended primitive unit cell with a side length exceeding 7 nm. The polyporous network shows potential for hosting and promoting the formation of chiral supramolecules, whereas a transition from 1D chiral randomness to an ordered racemate is discovered in a different porous phase. We correlate the observed structural changes to the adaptivity of the building block and surface-induced changes in the chemical state of the hydroxamic acid functional group.

16.
Nat Commun ; 10(1): 477, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696830

RESUMO

The photon-like behavior of electrons in graphene causes unusual confinement properties that depend strongly on the geometry and strength of the surrounding potential. We report bottom-up synthesis of atomically-precise one-dimensional (1D) arrays of point charges on graphene that allow exploration of a new type of supercritical confinement of graphene carriers. The arrays were synthesized by arranging F4TCNQ molecules into a 1D lattice on back-gated graphene, allowing precise tuning of both the molecular charge and the array periodicity. While dilute arrays of ionized F4TCNQ molecules are seen to behave like isolated subcritical charges, dense arrays show emergent supercriticality. In contrast to compact supercritical clusters, these extended arrays display both supercritical and subcritical characteristics and belong to a new physical regime termed "frustrated supercritical collapse". Here carriers in the far-field are attracted by a supercritical charge distribution, but their fall to the center is frustrated by subcritical potentials in the near-field, similar to trapping of light by a dense cluster of stars in general relativity.

17.
Angew Chem Int Ed Engl ; 57(49): 16030-16035, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30431221

RESUMO

The templated synthesis of porphyrin-based oligomers and heterosystems is of considerable interest for materials with tunable electronic gaps, photovoltaics, or sensing device elements. In this work, temperature-induced dehydrogenative coupling between unsubstituted free-base porphine units and their attachment to graphene nanoribbons on a well-defined Ag(111) support are scrutinized by bond-resolved scanning probe microscopy techniques. The detailed inspection of covalently fused porphine dimers obtained by in vacuo on-surface synthesis clearly reveals atomistic details of coupling motifs, whereby also putative reaction intermediates are identified. Moreover, the covalent attachment of porphines at preferred locations of atomically precise armchair-type graphene nanoribbons is demonstrated.

18.
ACS Nano ; 12(3): 2677-2684, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29498827

RESUMO

Intercalation of molecules into layered materials is actively researched in materials science, chemistry, and nanotechnology, holding promise for the synthesis of van der Waals heterostructures and encapsulated nanoreactors. However, the intercalation of organic molecules that exhibit physical or chemical functionality remains a key challenge to date. In this work, we present the synthesis of heterostructures consisting of porphines sandwiched between a Cu(111) substrate and an insulating hexagonal boron nitride ( h-BN) monolayer. We investigated the energetics of the intercalation, as well as the influence of the capping h-BN layer on the behavior of the intercalated molecules using scanning probe microscopy and density functional theory calculations. While the self-assembly of the molecules is altered upon intercalation, we show that the intrinsic functionalities, such as switching between different porphine tautomers, are preserved. Such insulator/molecule/metal structures provide opportunities to protect organic materials from deleterious effects of atmospheric environment, can be used to control chemical reactions through spatial confinement, and give access to layered materials based on the ample availability of synthesis protocols provided by organic chemistry.

19.
Nat Commun ; 8(1): 1948, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208962

RESUMO

Nanographenes, namely polycyclic aromatic hydrocarbons (PAHs) with nanoscale dimensions (>1 nm), are atomically precise cutouts from graphene. They represent prime models to enhance the scope of chemical and physical properties of graphene through structural modulation and functionalization. Defined nitrogen doping in nanographenes is particularly attractive due to its potential for increasing the number of π-electrons, with the possibility of introducing localized antiaromatic ring elements. Herein we present azomethine ylide homocoupling as a strategy to afford internally nitrogen-doped, non-planar PAH in solution and planar nanographene on surfaces, with central pyrazine rings. Localized antiaromaticity of the central ring is indicated by optical absorption spectroscopy in conjunction with theoretical calculations. Our strategy opens up methods for chemically tailoring graphene and nanographenes, modified by antiaromatic dopants.

20.
ACS Nano ; 11(9): 9151-9161, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28872822

RESUMO

Atomically thin hexagonal boron nitride (h-BN) layers on metallic supports represent a promising platform for the selective adsorption of atoms, clusters, and molecular nanostructures. Specifically, scanning tunneling microscopy (STM) studies revealed an electronic corrugation of h-BN/Cu(111), guiding the self-assembly of molecules and their energy level alignment. A detailed characterization of the h-BN/Cu(111) interface including the spacing between the h-BN sheet and its support-elusive to STM measurements-is crucial to rationalize the interfacial interactions within these systems. To this end, we employ complementary techniques including high-resolution noncontact atomic force microscopy, STM, low-energy electron diffraction, X-ray photoelectron spectroscopy, the X-ray standing wave method, and density functional theory. Our multimethod study yields a comprehensive, quantitative structure determination including the adsorption height and the corrugation of the sp2 bonded h-BN layer on Cu(111). Based on the atomic contrast in atomic force microscopy measurements, we derive a measurable-hitherto unrecognized-geometric corrugation of the h-BN monolayer. This experimental approach allows us to spatially resolve minute height variations in low-dimensional nanostructures, thus providing a benchmark for theoretical modeling. Regarding potential applications, e.g., as a template or catalytically active support, the recognition of h-BN on Cu(111) as a weakly bonded and moderately corrugated overlayer is highly relevant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...