Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(7): 073502, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34340413

RESUMO

A multi-energy soft x-ray pinhole camera has been designed, built, and deployed at the Madison Symmetric Torus to aid the study of particle and thermal transport, as well as MHD stability physics. This novel imaging diagnostic technique employs a pixelated x-ray detector in which the lower energy threshold for photon detection can be adjusted independently on each pixel. The detector of choice is a PILATUS3 100 K with a 450 µm thick silicon sensor and nearly 100 000 pixels sensitive to photon energies between 1.6 and 30 keV. An ensemble of cubic spline smoothing functions has been applied to the line-integrated data for each time-frame and energy-range, obtaining a reduced standard-deviation when compared to that dominated by photon-noise. The multi-energy local emissivity profiles are obtained from a 1D matrix-based Abel-inversion procedure. Central values of Te can be obtained by modeling the slope of the continuum radiation from ratios of the inverted radial emissivity profiles over multiple energy ranges with no a priori assumptions of plasma profiles, magnetic field reconstruction constraints, high-density limitations, or need of shot-to-shot reproducibility. In tokamak plasmas, a novel application has recently been tested for early detection, 1D imaging, and study of the birth, exponential growth, and saturation of runaway electrons at energies comparable to 100 × Te,0; thus, early results are also presented.

2.
Rev Sci Instrum ; 89(10): 10G116, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399822

RESUMO

A multi-energy soft x-ray pinhole camera has been designed and built for the Madison Symmetric Torus reversed field pinch to aid the study of particle and thermal-transport, as well as MHD stability physics. This novel imaging diagnostic technique combines the best features from both pulse-height-analysis and multi-foil methods employing a PILATUS3 x-ray detector in which the lower energy threshold for photon detection can be adjusted independently on each pixel. Further improvements implemented on the new cooled systems allow a maximum count rate of 10 MHz per pixel and sensitivity to the strong Al and Ar emission between 1.5 and 4 keV. The local x-ray emissivity will be measured in multiple energy ranges simultaneously, from which it is possible to infer 1D and 2D simultaneous profile measurements of core electron temperature and impurity density profiles with no a priori assumptions of plasma profiles, magnetic field reconstruction constraints, high-density limitations, or need of shot-to-shot reproducibility. The expected time and space resolutions will be 2 ms and <1 cm, respectively.

3.
Rev Sci Instrum ; 89(10): 10G119, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399863

RESUMO

A multi-energy soft x-ray pin-hole camera based on the PILATUS3 100 K x-ray detector has recently been installed on the Madison Symmetric Torus. This photon-counting detector consists of a two-dimensional array of ∼100 000 pixels for which the photon lower-threshold cutoff energy E c can be independently set for each pixel. This capability allows the measurement of plasma x-ray emissivity in multiple energy ranges with a unique combination of spatial and spectral resolution and the inference of a variety of important plasma properties (e.g., T e, n Z, Z eff). The energy dependence of each pixel is calibrated for the 1.6-6 keV range by scanning individual trimbit settings, while the detector is exposed to fluorescence emission from Ag, In, Mo, Ti, V, and Zr targets. The resulting data for each line are then fit to a characteristic "S-curve" which determines the mapping between the 64 possible trimbit settings for each pixel. The statistical variation of this calibration from pixel-to-pixel was explored, and it was found that the discreteness of trimbit settings results in an effective threshold resolution of ΔE < 100 eV. A separate calibration was performed for the 4-14 keV range, with a resolution of ΔE < 200 eV.

5.
Rev Sci Instrum ; 87(11): 11E320, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910559

RESUMO

Soft x-ray detection with the new "multi-energy" PILATUS3 detector systems holds promise as a magnetically confined fusion (MCF) plasma diagnostic for ITER and beyond. The measured x-ray brightness can be used to determine impurity concentrations, electron temperatures, ne2Zeff products, and to probe the electron energy distribution. However, in order to be effective, these detectors which are really large arrays of detectors with photon energy gating capabilities must be precisely calibrated for each pixel. The energy-dependence of the detector response of the multi-energy PILATUS3 system with 100 K pixels has been measured at Dectris Laboratory. X-rays emitted from a tube under high voltage bombard various elements such that they emit x-ray lines from Zr-Lα to Ag-Kα between 1.8 and 22.16 keV. Each pixel on the PILATUS3 can be set to a minimum energy threshold in the range from 1.6 to 25 keV. This feature allows a single detector to be sensitive to a variety of x-ray energies, so that it is possible to sample the energy distribution of the x-ray continuum and line-emission. PILATUS3 can be configured for 1D or 2D imaging of MCF plasmas with typical spatial energy and temporal resolution of 1 cm, 0.6 keV, and 5 ms, respectively.

6.
Mech Dev ; 49(3): 223-34, 1995 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-7734395

RESUMO

Proper development of metazoan embryos requires cell to cell communications. In many instances, these communications involve diffusible molecules, particularly members of the Transforming Growth Factor beta superfamily. In an effort to identify new members of this superfamily involved in the control of early zebrafish embryogenesis, we have isolated a gene, Radar, which appears to be conserved throughout vertebrate evolution and defines a new subfamily within the superfamily. Its pattern of expression suggests that Radar plays a role in the dorso-ventral polarity of the neural plate, blood islands formation, blood cells differentiation, the establishment of retinal dorso-ventral polarity and/or proper axonal retinotectal projections. Radar expression in ntl homozygous mutants indicates that notochord and hypochord development are intimately linked.


Assuntos
Crista Neural/embriologia , Retina/embriologia , Fator de Crescimento Transformador beta/genética , Peixe-Zebra/embriologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Sequência Conservada , Dados de Sequência Molecular , Alinhamento de Sequência , Fator de Crescimento Transformador beta/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...