Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(14): 146802, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31702221

RESUMO

We present femtosecond laser-induced electron emission from nanodiamond-coated tungsten tips. Based on the shortness of the femtosecond laser pulses, electrons can be photoexcited for wavelengths from the infrared (1932 nm) to the ultraviolet (235 nm) because multiphoton excitation becomes efficient over the entire spectral range. Depending on the laser wavelength, we find different dominant emission channels identified by the number of photons needed to emit electrons. Based on the band alignment between tungsten and nanodiamond, the relevant emission channels can be identified as specific transitions in diamond and its graphitic boundaries. It is the combination of the character of initial and final states (i.e., bulk or surface-near, direct or indirect excitation in the diamond band structure), the number of photons providing the excitation energy, and the peak intensity of the laser pulses that determines the dominant excitation channel for photoemission. A specific feature of the hydrogen-terminated nanodiamond coating is its negative electron affinity that significantly lowers the work function and enables efficient emission from the conduction band minimum into vacuum without an energy barrier. Emission is stable for bunch charges of up to 400 electrons per laser pulse. We infer a normalized emittance of <0.20 nm rad and a normalized peak brightness of >1.2×10^{12} A m^{-2} sr^{-1}. The properties of these tips are encouraging for their use as laser-triggered electron sources in applications such as ultrafast electron microscopy as well as diffraction and novel photonics-based laser accelerators.

2.
Nanotechnology ; 26(2): 025302, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25517943

RESUMO

We present a technique to pattern the charge density of a large-area epitaxial graphene sheet locally without using metallic gates. Instead, local intercalation of the graphene-substrate interface can selectively be established in the vicinity of graphene edges or predefined voids. It provides changes of the work function of several hundred meV, corresponding to a conversion from n-type to p-type charge carriers. This assignment is supported by photoelectron spectroscopy, scanning tunneling microscopy, scanning electron microscopy and Hall effect measurements. The technique introduces materials contrast to a graphene sheet in a variety of geometries and thus allows for novel experiments and novel functionalities.

3.
Phys Rev Lett ; 112(15): 155502, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24785050

RESUMO

We demonstrate a novel doping mechanism of silicon, namely n-type transfer doping by adsorbed organic cobaltocene (CoCp2*) molecules. The amount of transferred charge as a function of coverage is monitored by following the ensuing band bending via surface sensitive core-level photoelectron spectroscopy. The concomitant loss of electrons in the CoCp2* adlayer is quantified by the relative intensities of chemically shifted Co2p components in core-level photoelectron spectroscopy which correspond to charged and neutral molecules. Using a previously developed model for transfer doping, the evolution in relative intensities of the two components as a function of coverage has been reproduced successfully. A single, molecule-specific parameter, the negative donor energy of -(0.50±0.15) eV suffices to describe the self-limiting doping process with a maximum areal density of transferred electrons of 2×1013 cm-2 in agreement with the measured downward band bending. The advantage of this doping mechanism over conventional doping for nanostructures is addressed.

4.
Phys Rev Lett ; 108(24): 246104, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23004296

RESUMO

We explain the robust p-type doping observed for quasi-free-standing graphene on hexagonal silicon carbide by the spontaneous polarization of the substrate. This mechanism is based on a bulk property of SiC, unavoidable for any hexagonal polytype of the material and independent of any details of the interface formation. We show that sign and magnitude of the polarization are in perfect agreement with the doping level observed in the graphene layer. With this mechanism, models based on hypothetical acceptor-type defects as they are discussed so far are obsolete. The n-type doping of epitaxial graphene is explained conventionally by donorlike states associated with the buffer layer and its interface to the substrate that overcompensate the polarization doping.

5.
Nature ; 430(6998): 439-41, 2004 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-15269764

RESUMO

The electronic properties of many materials can be controlled by introducing appropriate impurities into the bulk crystal lattice in a process known as doping. In this way, diamond (a well-known insulator) can be transformed into a semiconductor, and recent progress in thin-film diamond synthesis has sparked interest in the potential applications of semiconducting diamond. However, the high dopant activation energies (in excess of 0.36 eV) and the limitation of donor incorporation to (111) growth facets only have hampered the development of diamond-based devices. Here we report a doping mechanism for diamond, using a method that does not require the introduction of foreign atoms into the diamond lattice. Instead, C60 molecules are evaporated onto the hydrogen-terminated diamond surface, where they induce a subsurface hole accumulation and a significant rise in two-dimensional conductivity. Our observations bear a resemblance to the so-called surface conductivity of diamond seen when hydrogenated diamond surfaces are exposed to air, and support an electrochemical model in which the reduction of hydrated protons in an aqueous surface layer gives rise to a hole accumulation layer. We expect that transfer doping by C60 will open a broad vista of possible semiconductor applications for diamond.

6.
Phys Rev Lett ; 85(16): 3472-5, 2000 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-11030924

RESUMO

Hydrogen-terminated diamond exhibits a high surface conductivity (SC) that is commonly attributed to the direct action of hydrogen-related acceptors. We give experimental evidence that hydrogen is only a necessary requirement for SC; exposure to air is also essential. We propose a mechanism in which a redox reaction in an adsorbed water layer provides the electron sink for the subsurface hole accumulation layer. The model explains the experimental findings including the fact that hydrogenated diamond is unique among all semiconductors in this respect.

11.
Phys Rev B Condens Matter ; 40(1): 88-92, 1989 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-9990887
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...