Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34443466

RESUMO

Bees and their products are useful bioindicators of anthropogenic activities and could overcome the deficiencies of air quality networks. Among the environmental contaminants, mercury (Hg) is a toxic metal that can accumulate in living organisms. The first aim of this study was to develop a simple analytical method to determine Hg in small mass samples of bees and beehive products by cold vapor atomic fluorescence spectrometry. The proposed method was optimized for about 0.02 g bee, pollen, propolis, and royal jelly, 0.05 g beeswax and honey, or 0.1 g honeydew with 0.5 mL HCl, 0.2 mL HNO3, and 0.1 mL H2O2 in a water bath (95 °C, 30 min); samples were made up to a final volume of 5 mL deionized water. The method limits sample manipulation and the reagent mixture volume used. Detection limits were lower than 3 µg kg-1 for a sample mass of 0.02 g, and recoveries and precision were within 20% of the expected value and less than 10%, respectively, for many matrices. The second aim of the present study was to evaluate the proposed method's performances on real samples collected in six areas of the Lazio region in Italy.


Assuntos
Abelhas/química , Monitoramento Biológico/métodos , Mercúrio/análise , Espectrometria de Fluorescência/métodos , Animais , Temperatura Baixa , Cucumis melo/química , Confiabilidade dos Dados , Poluição Ambiental/análise , Ácidos Graxos/análise , Mel/análise , Itália , Pólen/química , Própole/análise , Espectrofotometria Atômica/métodos , Ceras/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-32784783

RESUMO

In this study, we have evaluated the efficiency of a chemical fractionation procedure for the characterization of both the water-soluble and the insoluble fraction of the main elemental components of particulate matter (PM) deposited on urban leaves. The proposed analytical approach is based on the chemical analysis of leaf washing solutions and membrane filters used for their filtration. The ionic concentration of leaf washing solutions was compared with their electrical conductivity, making it a valuable proxy for the quantification of the water-soluble and ionic fraction of leaf deposited PM. The chemical composition of both the water-soluble and the insoluble fraction of PM, resulting from this fractionation procedure, was compared with results obtained by scanning electron microscopy coupled with energy-dispersed X-Rays spectroscopy (SEM/EDX) and processed through chemometrics. Results obtained proved that the proposed approach is able to provide an estimation of total leaf deposited PM and it is highly reliable for the evaluation of the emission impact of different PM sources, being able to increase the selectivity of PM elemental components as specific source tracers; consequently providing useful information also for the assessment of human health risks.


Assuntos
Fracionamento Químico/métodos , Monitoramento Ambiental/métodos , Material Particulado/análise , Folhas de Planta/química , Poluentes Atmosféricos/análise , Humanos , Tamanho da Partícula
3.
Environ Pollut ; 266(Pt 3): 115271, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32814272

RESUMO

The ability of particulate matter (PM) to induce oxidative stress is frequently estimated by acellular oxidative potential (OP) assays, such as ascorbic acid (AA) and 1,4-dithiothreitol (DTT), used as proxy of reactive oxygen species (ROS) generation in biological systems, and particle-bound ROS measurement, such as 2',7'-dichlorodihydrofluorescein (DCFH) assay. In this study, we evaluated the spatial and size distribution of OP results obtained by three OP assays (OPAA, OPDCFH and OPDTT), to qualitative identify the relative relevance of single source contributions in building up OP values and to map the PM potential to induce oxidative stress in living organisms. To this aim, AA, DCFH and DTT assays were applied to size-segregated PM samples, collected by low-pressure cascade impactors, and to PM10 samples collected at 23 different sampling sites (about 1 km between each other) in Terni, an urban and industrial hot-spot of Central Italy, by using recently developed high spatial resolution samplers of PM, which worked in parallel during three monitoring periods (February, April and December 2017). The sampling sites were chosen for representing the main spatially disaggregated sources of PM (vehicular traffic, rail network, domestic heating, power plant for waste treatment, steel plant) present in the study area. The obtained results clearly showed a very different sensitivity of the three assays toward each local PM source. OPAA was particularly sensitive toward coarse particles released from the railway, OPDCFH was sensible to fine particles released from the steel plant and domestic biomass heating, and OPDTT was quite selectively sensitive toward the fine fraction of PM released by industrial and biomass burning sources.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Monitoramento Ambiental , Itália , Oxirredução , Estresse Oxidativo , Tamanho da Partícula
4.
Environ Int ; 130: 104818, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31279184

RESUMO

Potential exposure to toxic elements initially occurs during gestation and after birth via breast milk, which is the principal source of nutrients for infants during the first months of life. In this study, we evaluated whether maternal oral supplementation with a multi-strain probiotic product can protect infants from exposure to arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) via breast milk. In-vitro studies of the bacterial strains present in this probiotic product showed a high bacterial tolerance for As, Cd, Hg, and Pb, and good binding capacity for Cd, Hg, and Pb (72%, 81%, and 64%, respectively) within 1 h of contact. We evaluated concentrations (5 mg L-1 for Cd and Pb, and 2 mg L-1 for Hg) that largely exceeded the provisional tolerable weekly intake of these toxic elements via food or water applicable for human consumption. Changes in the levels of these elements in breast milk and newborn stools were evaluated in the control (orally supplemented with placebo) and experimental (orally supplemented with probiotic) groups at birth (t0), 15 days (t15), and 30 days (t30) after delivery. Elemental analysis of breast milk did not show significant differences between the control and experimental groups at different stages of lactation; however, stool samples obtained from newborns of mothers supplemented with the probiotic product showed that Cd levels were significantly reduced (by 26%) at t15 compared with the levels of the controls. Our data did not show an association between concentration of toxic elements in breast milk and that in newborn stools. Indeed, the concentration of Cd, Hg, and Pb in breast milk decreased during the lactation period, whereas the levels of these elements in newborn stools were stable over time. Although our in-vitro data indicate that the consortium of these probiotic strains can absorb toxic compounds, this study was limited by its small sample size and potential uncontrolled confounding effects, such as maternal diet and lifestyle. Therefore, we could not confirm whether prophylactic use of this probiotic product can reduce the absorption of toxic elements. The risk assessment in the studied population evidenced a margin of exposure (MOE) of 1, or between 1 and 10 for Pb, and lower than 50 for As. This poses a potential risk for breastfed infants, indicating that interventions aimed to avoid breastfeeding-related health risks remain a major challenge in public health.


Assuntos
Monitoramento Biológico/métodos , Fezes/química , Metais Pesados , Leite Humano/química , Probióticos/uso terapêutico , Adulto , Intoxicação por Metais Pesados/prevenção & controle , Humanos , Lactente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...