Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mov Ecol ; 12(1): 36, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725038

RESUMO

BACKGROUND: The life cycle of most baleen whales involves annual migrations from low-latitude breeding grounds to high latitude feeding grounds. In most species, these migrations are traditionally considered to be carried out according to information acquired through vertical social learning during the first months of life and made individually. However, some recent studies have suggested a more complex scenario, particularly for the species of the Balaenoptera genus. METHODS: Here, we studied the variation of δ15N and δ13C values along the growth axis of the baleen plate from 24 fin whales feeding off western Iceland to delve into their pattern of movements and to identify potential associations between individuals. The segment of baleen plate analyzed informed about at least two complete migratory cycles. We performed cluster analyses through two different methodologies and, whenever possible, we genotyped 20 microsatellite loci to determine potential existence of kinship. RESULTS: Results of the of δ15N and δ13C values agree with a dispersion strategy in the winter breeding grounds. However, and despite the overall large variability, several pairs or groups of individuals with no kinship showed highly similar isotopic patterns for two consecutive years for both δ15N and δ13C values. CONCLUSIONS: Our results suggest that, notably, some whales without kinship share the same migratory regime and destinations. We hypothesize that this could reflect either: (i) the sharing of particularly beneficial migratory regimes, and/or (ii) long-term association between individuals.

2.
Sci Rep ; 11(1): 22234, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782702

RESUMO

Detailed knowledge of habitat use by marine megafauna is critical to understand their ecological roles and for the adequate management of marine resources. Antarctic fur seals (Arctocephalus gazella) inhabiting the Atlantic sector of the Southern Ocean prey largely on Antarctic krill (Euphausia superba) and play a central role in managing the krill fishery. Here, we assessed the demographic structure of three post-mating, early moult male haul-outs in the South Shetland Islands in early March and calculated the relative contribution of juveniles (1-4 years old) and sub-adult males (5-6 years) to the population remaining in maritime Antarctica after the breeding season. We also satellite tagged 11 juvenile males and four sub-adult males to analyze their movements and develop a species distribution model including both age classes. Our results highlighted the dominance of young individuals in the male population, revealed that they do not behave as central place foragers and identified key environmental drivers that affected their distribution at-sea throughout winter. Predicted potential foraging habitat overlapped highly with the known distribution of Antarctic krill, and identified the waters off the western Antarctic Peninsula and the Scotia Sea as the core of the distribution area of juvenile and sub-adult male Antarctic fur seals in winter. This pattern is similar to that of adult males but totally different from that of adult females, as the latter overwinter in areas at latitude 45-55° S. This segregation has implications for the ecology and management of the krill fishery.


Assuntos
Otárias , Dinâmica Populacional , Estações do Ano , Fatores Etários , Animais , Regiões Antárticas , Comportamento Animal , Ecossistema , Feminino , Geografia , Masculino
3.
Sci Total Environ ; 737: 140210, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783841

RESUMO

Microplastics are present in almost all seas and oceans, including the Southern Ocean. To the south of the Antarctic Polar Front, microplastics are present mainly west to the Antarctic Peninsula, but information is scarce about their impact on the pelagic food web. Here, we analysed 42 scats of male Antarctic fur seals (Arctocephalus gazella) collected in late summer at Deception Island (South Shetland Islands), which allowed us to assess the presence of microplastics in the pelagic food web of the Bransfield Strait (Western Antarctica). Furthermore, we analysed the hard remains of prey in the scats to characterize the diet of fur seals. Hard remains recovered from the scats revealed that male Antarctic fur seals foraged on krill and myctophid fishes during late summer. Fourier-transform infrared spectroscopy (FT-IR) revealed that none of the seven fragments and three fibres recovered from their scats were microplastics, but rather were silicate minerals and chitin. These results suggest that the levels of microplastic pollution in the pelagic food web of the Bransfield Strait are extremely low.


Assuntos
Otárias , Animais , Regiões Antárticas , Atividades Humanas , Masculino , Microplásticos , Oceanos e Mares , Plásticos , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Harmful Algae ; 86: 74-83, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31358279

RESUMO

Nodularia spumigena is a toxic cyanobacteria that blooms in the Baltic Sea every year. In the brackish water of the Baltic Sea, its toxin, nodularin, mainly affects the biota in the surface water due to the natural buoyancy of this species. However, the fate of the toxin is unknown, once the cyanobacteria bloom enters the more saline waters of the Kattegat. In order to investigate this knowledge gap, a bloom of N. spumigena was followed during its passage, carried by surface currents, from the Baltic Sea into the Kattegat area, through the Öresund strait. N. spumigena cells showed an increased cell concentration through the water column during the passage of the bloom (up to 130 103 cells ml-1), and cells (4.2 103 cells ml-1) could be found down to 20 m depth, below a pycnocline. Sedimentation trap samples from below the pycnocline (10-12 m depth) also showed an increased sedimentation of N. spumigena filaments during the passage of the bloom. The toxin nodularin was detected both in water samples (0.3-6.0 µg l-1), samples of sedimenting material (a toxin accumulation rate of 20 µg m-2 day-1), zooplankton (up to 0.1 ng ind.-1 in copepods), blue mussels (70-230 µg kg-1 DW), pelagic and benthic fish (herring (1.0-3.4 µg kg-1 DW in herring muscle or liver) and flounder (1.3-6.2 µg kg-1 DW in muscle, and 11.7-26.3 µg kg-1 DW in liver). A laboratory experiment showed that N. spumigena filaments developed a decreased buoyancy at increased salinities and that they were even sinking with a rate of up to 1,7 m day-1 at the highest salinity (32 PSU). This has implications for the fate of brackish water cyanobacterial blooms, when these reach more saline waters. It can be speculated that a significant part of the blooms content of nodularin will reach benthic organisms in this situation, compared to blooms decaying in brackish water, where most of the bloom is considered to be decomposed in the surface waters.


Assuntos
Cianobactérias , Nodularia , Animais , Países Bálticos , Cadeia Alimentar , Peptídeos Cíclicos
5.
J Exp Biol ; 221(Pt 23)2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30337355

RESUMO

Bowhead and right whale (balaenid) baleen filtering plates, longer in vertical dimension (≥3-4 m) than the closed mouth, presumably bend during gape closure. This has not been observed in live whales, even with scrutiny of video-recorded feeding sequences. To determine what happens to the baleen during gape closure, we conducted an integrative, multifactorial study including materials testing, functional (flow tank and kinematic) testing and histological examination. We measured baleen bending properties along the dorsoventral length of plates and anteroposterior location within a rack of plates via mechanical (axial bending, composite flexure, compression and tension) tests of hydrated and air-dried tissue samples from balaenid and other whale baleen. Balaenid baleen is remarkably strong yet pliable, with ductile fringes, and low stiffness and high elasticity when wet; it likely bends in the closed mouth when not used for filtration. Calculation of flexural modulus from stress/strain experiments shows that the balaenid baleen is slightly more flexible where it emerges from the gums and at its ventral terminus, but kinematic analysis indicates plates bend evenly along their whole length. Fin and humpback whale baleen has similar material properties but less flexibility, with no dorsoventral variation. The internal horn tubes have greater external and hollow luminal diameter but lower density in the lateral relative to medial baleen of bowhead and fin whales, suggesting a greater capacity for lateral bending. Baleen bending has major consequences not only for feeding morphology and energetics but also for conservation given that entanglement in fishing gear is a leading cause of whale mortality.


Assuntos
Boca/anatomia & histologia , Baleias/anatomia & histologia , Animais , Fenômenos Biomecânicos , Queratinas , Boca/fisiologia , Baleias/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...