Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; : 168711, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019106

RESUMO

Previous studies on RNase R have highlighted significant effects of this ribonuclease in several processes of Streptococcus pneumoniae biology. In this work we show that elimination of RNase R results in overexpression of most of genes encoding the components of type II fatty acid biosynthesis (FASII) cluster. We demonstrate that RNase R is implicated in the turnover of most of transcripts from this pathway, affecting the outcome of the whole FASII cluster, and ultimately leading to changes in the membrane fatty acid composition. Our results show that the membrane of the deleted strain contains higher proportion of unsaturated and long-chained fatty acids than the membrane of the wild type strain. These alterations render the RNase R mutant more prone to membrane lipid peroxidation and are likely the reason for the increased sensitivity of this strain to detergent lysis and to the action of the bacteriocin nisin. Reprogramming of membrane fluidity is an adaptative cell response crucial for bacterial survival in constantly changing environmental conditions. The data presented here is suggestive of a role for RNase R in the composition of S. pneumoniae membrane , with strong impact on pneumococci adaptation to different stress situations.

2.
Plant Physiol Biochem ; 42(4): 283-90, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15120112

RESUMO

Uncoupling proteins (UCPs) form a subfamily within the mitochondrial carrier protein family, which catalyze a free fatty acid-mediated proton recycling and can modulate the tightness of coupling between mitochondrial respiration and ATP synthesis. As in mammalian tissues, UCPs are rather ubiquitous in the plant kingdom and widespread in plant tissues in which they could have various physiological roles, such as heat production or protection against free oxygen radicals. The simultaneous occurrence in plant mitochondria of two putative energy-dissipating systems, namely UCP which dissipates the proton motive force, and alternative oxidase (AOX) which dissipates the redox potential, raises the question of their functional interactions.


Assuntos
Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Metabolismo Energético , Canais Iônicos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/química , Filogenia , Proteínas de Plantas/química , Proteína Desacopladora 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...