Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Stress Chaperones ; 1(1): 78-89, 1996 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9222592

RESUMO

Differential scanning calorimetry was used to monitor the thermal transitions of the 70 kDa heat shock cognate protein (Hsc70). Hsc70 had endothermic transitions with midpoints (Tm) at 59 degrees C and 63 degrees C in the absence and presence of ATP, respectively, and a similar increase in Tm was observed using intrinsic fluorescence of tryptophan. Combined with increased exposure at 60 degrees C of non-polar residues of Hsc70 to which the hydrophobic, fluorescent probe ANS bound, these data indicate that the endotherms represent thermal denaturation and that bound nucleotide stabilizes Hsc70. An exothermic transition (Tm = 66 degrees C) was detected by calorimetry for Hsc70-apocytochrome c (apo c) complexes. An increase in intrinsic fluorescence with the same Tm and increased turbidity indicated aggregation of the denatured Hsc70-apo c. A novel finding was an exothermic transition of Hsc70 beginning at about 30 degrees C (Tm = 41 degrees C). No changes in either intrinsic fluorescence or ANS fluorescence attributable to protein transitions were detected in this temperature range. Examination of samples run on native polyacrylamide gels indicated that this exothermic transition was not due to Hsc70 aggregation or multimer formation. However, Hsc70 was protease-resistant at 20 degrees C, sensitive at 40 degrees C and resistant when returned to 20 degrees C, indicating that this exotherm is associated with a reversible conformational change. As an assay for Hsc70 chaperoning function, complex formation was measured as a function of temperature using a variety of substrates including the model unfolded protein apo c, a pigeon cytochrome c fragment, a representative hydrophobic-aromatic peptide FYQLALT, and a representative hydrophobic-basic motif NIVRKKK. For all of these substrates, the amount of complex formed increased with increasing temperature over the same range as the 41 degrees C exotherm. It is proposed that a conformational change exposes polar and charged residues in Hsc70 which subsequently become hydrated, resulting in an active chaperone. Hsc70 may be a thermal sensor that matches the supply of chaperoning activity with demand for it over the physiological temperature range of mammalian cells. Thermal activation of Hsc70 may also have a role in acquired thermotolerance.


Assuntos
Temperatura Corporal/fisiologia , Proteínas de Transporte/fisiologia , Proteínas de Escherichia coli , Proteínas de Choque Térmico HSP70/fisiologia , Resposta ao Choque Térmico/fisiologia , Sequência de Aminoácidos , Animais , Apolipoproteínas C/metabolismo , Varredura Diferencial de Calorimetria , Proteínas de Transporte/análise , Bovinos , Fluorometria , Proteínas de Choque Térmico HSC70 , Proteínas de Choque Térmico HSP70/análise , Chaperonas Moleculares/análise , Estrutura Molecular , Conformação Proteica , Coloração pela Prata , Triptofano
2.
Int J Hyperthermia ; 10(5): 605-18, 1994.
Artigo em Inglês | MEDLINE | ID: mdl-7806918

RESUMO

Protein denaturation has been shown to occur in cells during heat shock and is closely correlated with the cellular responses to hyperthermia; however, little is known about protein denaturation in tissue. This study describes an analysis of endothermic transitions in the hyperthermic region using differential scanning calorimetry (DSC) in liver, white muscle, and lens tissue from Wistar rat, New Zealand white rabbit, and Rainbow trout. Complex DSC profiles consisting of several transitions were obtained for each tissue. Evidence is given that these transitions are due primarily to protein denaturation. Onset temperatures of denaturation (Tl) for rat liver, muscle, and lens are about 38, 39 and 48 degrees C, respectively. Thus, significant protein denaturation occurs in liver and muscle during mild hyperthermia (40-45 degrees C) with lens considerably more stable. The values of Tl for the same tissue from the different animals correlates well with body temperature (rabbit 39.4, rat 38.2, and trout grown at 11 degrees C); Tl increased in the same order as the body temperature for each tissue. Thus, there is correlation between the onset temperature for protein denaturation in these tissues and body temperature.


Assuntos
Temperatura Alta/efeitos adversos , Desnaturação Proteica , Animais , Varredura Diferencial de Calorimetria , Cristalino/química , Cristalino/lesões , Fígado/química , Fígado/lesões , Músculos/química , Músculos/lesões , Oncorhynchus mykiss , Especificidade de Órgãos , Coelhos , Ratos , Ratos Wistar , Especificidade da Espécie
3.
J Cell Biol ; 122(6): 1267-76, 1993 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-8376462

RESUMO

There is circumstantial evidence that protein denaturation occurs in cells during heat shock at hyperthermic temperatures and that denatured or damaged protein is the primary inducer of the heat shock response. However, there is no direct evidence regarding the extent of denaturation of normal cellular proteins during heat shock. Differential scanning calorimetry (DSC) is the most direct method of monitoring protein denaturation or unfolding. Due to the fundamental parameter measured, heat flow, DSC can be used to detect and quantitate endothermic transitions in complex structures such as isolated organelles and even intact cells. DSC profiles with common features are obtained for isolated rat hepatocytes, liver homogenate, and Chinese hamster lung V79 fibroblasts. Five main transitions (A-E), several of which are resolvable into subcomponents, are observed with transition temperatures (Tm) of 45-98 degrees C. The onset temperature is approximately 40 degrees C, but some transitions may extend as low as 37-38 degrees C. In addition to acting as the primary signal for heat shock protein synthesis, the inactivation of critical proteins may lead to cell death. Critical target analysis implies that the rate limiting step of cell killing for V79 cells is the inactivation of a protein with Tm = 46 degrees C within the A transition. Isolated microsomal membranes, mitochondria, nuclei, and a cytosolic fraction from rat liver have distinct DSC profiles that contribute to different peaks in the profile for intact hepatocytes. Thus, the DSC profiles for intact cells appears to be the sum of the profiles of all subcellular organelles and components. The presence of endothermic transitions in the isolated organelles is strong evidence that they are due to protein denaturation. Each isolated organelle has an onset for denaturation near 40 degrees C and contains thermolabile proteins denaturing at the predicted Tm (46 degrees C) for the critical target. The extent of denaturation at any temperature can be approximately by the fractional calorimetric enthalpy. After scanning to 45 degrees C at 1 degree C/min and immediately cooling, a relatively mild heat shock, an estimated fraction denaturation of 4-7% is found in hepatocytes, V79 cells, and the isolated organelles other than nuclei, which undergo only 1% denaturation because of the high thermostability of chromatin. Thus, thermolabile proteins appear to be present in all cellular organelles and components, and protein denaturation is widespread and extensive after even mild heat shock.


Assuntos
Temperatura Alta , Fígado/química , Organelas/química , Desnaturação Proteica , Animais , Varredura Diferencial de Calorimetria , Núcleo Celular/química , Células Cultivadas , Cromatina/ultraestrutura , Cricetinae , Cricetulus , Citosol/química , Proteínas de Choque Térmico/análise , Fígado/ultraestrutura , Pulmão/química , Masculino , Microssomos/química , Mitocôndrias/química , Organelas/ultraestrutura , Ratos , Ratos Wistar , Temperatura
4.
Biochemistry ; 31(50): 12706-12, 1992 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-1472509

RESUMO

The thermodynamic parameters characterizing protein folding can be obtained directly using differential scanning calorimetry (DSC). They are meaningful only for reversible unfolding at equilibrium, which holds for small globular proteins; however, the unfolding or denaturation of most large, multidomain or multisubunit proteins is either partially or totally irreversible. The simplest kinetic model describing partially irreversible denaturation requires three states: Formula [see text] We obtain numerical solutions for N, U, and D as a function of temperature for this model and derive profiles of excess specific heat (Cp) in terms of the reduced variables v/ki and k1/k3, where v is the scan rate. The three-state model reduces to the two-state reversible or irreversible models for very large or very small values of k1/k3, respectively. The apparent transition temperature (Tapp) is always reduced by the irreversible step (U-->D). For all values of k3, Tapp is independent of v/k1 at sufficiently slow scan rates, even when denaturation is highly irreversible, but increases identically for all models at fast scan rates in which case the excess specific heat profile is determined by the rate of unfolding. Accurate values of delta H and delta S can be obtained for the reversible step only when k1 is more than 2000-50,000 times greater than k3. In principle, approximate values for the ratio k1/k3 can be obtained from plots of fraction unfolded vs fraction irreversibly denatured as a function of temperature; however, the fraction irreversibly denatured is difficult to measure accurately by DSC alone.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Varredura Diferencial de Calorimetria , Desnaturação Proteica , Cinética , Modelos Químicos , Dobramento de Proteína , Temperatura
5.
J Cell Physiol ; 142(3): 628-34, 1990 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-2312619

RESUMO

Heat shock denatures cellular protein and induces both a state of acquired thermotolerance, defined as resistance to a subsequent heat shock, and the synthesis of a category of proteins referred to as heat-shock proteins (HSPs). Thermotolerance may be due to the stabilization of thermolabile proteins that would ordinarily denature during heat shock, either by HSPs or some other factors. We show by differential scanning calorimetry (DSC) that mild heat shock irreversibly denatures a small fraction of Chinese hamster lung V79-WNRE cell protein (i.e., the enthalpy change, which is proportional to denaturation, on scanning to 45 degrees C at 1 degree C/min is approximately 2.3% of the total calorimetric enthalpy). Thermostability, defined by the extent of denaturation during heat shock and determined from DSC scans of whole cells, increases as the V79 cells become thermotolerant. Cellular stabilization appears to be due to an increase in the denaturation temperature of the most thermolabile proteins; there is no increase in the denaturation temperatures of the most thermally resistant proteins, i.e., those denaturing above 65 degrees C. Cellular stabilization is also observed in the presence of glycerol, which is known to increase resistance to heat shock and to stabilize proteins in vitro. A model is presented, based on a direct relationship between the extent of hyperthermic killing and the denaturation or inactivation of a critical target that defines the rate-limiting step in killing, which predicts a transition temperature (Tm) of the critical target for control V79-WNRE cells of 46.0 degrees C and a Tm of 47.3 degrees C for thermotolerant cells. This shift of 1.3 degrees C is consistent with the degree of stabilization detected by DSC.


Assuntos
Sobrevivência Celular , Temperatura Alta , Animais , Varredura Diferencial de Calorimetria , Linhagem Celular , Cricetinae , Cricetulus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...