Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Metab ; 5: 9, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093815

RESUMO

BACKGROUND: Cancer cells that enter the metastatic cascade require traits that allow them to survive within the circulation and colonize distant organ sites. As disseminating cancer cells adapt to their changing microenvironments, they also modify their metabolism and metabolite production. METHODS: A mouse xenograft model of spontaneous tumor metastasis was used to determine the metabolic rewiring that occurs between primary cancers and their metastases. An "autonomous" mass spectrometry-based untargeted metabolomic workflow with integrative metabolic pathway analysis revealed a number of differentially regulated metabolites in primary mammary fat pad (MFP) tumors compared to microdissected paired lung metastases. The study was further extended to analyze metabolites in paired normal tissues which determined the potential influence of metabolites from the microenvironment. RESULTS: Metabolomic analysis revealed that multiple metabolites were increased in metastases, including cholesterol sulfate and phospholipids (phosphatidylglycerols and phosphatidylethanolamine). Metabolite analysis of normal lung tissue in the mouse model also revealed increased levels of these metabolites compared to tissues from normal MFP and primary MFP tumors, indicating potential extracellular uptake by cancer cells in lung metastases. These results indicate a potential functional importance of cholesterol sulfate and phospholipids in propagating metastasis. In addition, metabolites involved in DNA/RNA synthesis and the TCA cycle were decreased in lung metastases compared to primary MFP tumors. CONCLUSIONS: Using an integrated metabolomic workflow, this study identified a link between cholesterol sulfate and phospholipids, metabolic characteristics of the metastatic niche, and the capacity of tumor cells to colonize distant sites.

2.
DNA Repair (Amst) ; 23: 79-87, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25263164

RESUMO

NAD(+) metabolism is an essential regulator of cellular redox reactions, energy pathways, and a substrate provider for NAD(+) consuming enzymes. We recently demonstrated that enhancement of NAD(+)/NADH levels in breast cancer cells with impaired mitochondrial NADH dehydrogenase activity, through augmentation of complex I or by supplementing tumor cell nutrients with NAD(+) precursors, inhibits tumorigenicity and metastasis. To more fully understand how aberrantly low NAD(+) levels promote tumor cell dissemination, we here asked whether inhibition of NAD(+) salvage pathway activity by reduction in nicotinamide phosphoribosyltransferase (NAMPT) expression can impact metastasis and tumor cell adhesive functions. We show that knockdown of NAMPT, the enzyme catalyzing the rate-limiting step of the NAD(+) salvage pathway, enhances metastatic aggressiveness in human breast cancer cells and involves modulation of integrin expression and function. Reduction in NAMPT expression is associated with upregulation of select adhesion receptors, particularly αvß3 and ß1 integrins, and results in increased breast cancer cell attachment to extracellular matrix proteins, a key function in tumor cell dissemination. Interestingly, NAMPT downregulation prompts expression of integrin αvß3 in a high affinity conformation, known to promote tumor cell adhesive interactions during hematogenous metastasis. NAMPT has been selected as a therapeutic target for cancer therapy based on the essential functions of this enzyme in NAD(+) metabolism, cellular redox, DNA repair and energy pathways. Notably, our results indicate that incomplete inhibition of NAMPT, which impedes NAD(+) metabolism but does not kill a tumor cell can alter its phenotype to be more aggressive and metastatic. This phenomenon could promote cancer recurrence, even if NAMPT inhibition initially reduces tumor growth.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Citocinas/metabolismo , Integrina alfaVbeta3/metabolismo , Integrina beta1/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Animais , Neoplasias da Mama/genética , Adesão Celular , Linhagem Celular Tumoral , Citocinas/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos SCID , Nicotinamida Fosforribosiltransferase/genética , Vitronectina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Clin Invest ; 123(3): 1068-81, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23426180

RESUMO

Despite advances in clinical therapy, metastasis remains the leading cause of death in breast cancer patients. Mutations in mitochondrial DNA, including those affecting complex I and oxidative phosphorylation, are found in breast tumors and could facilitate metastasis. This study identifies mitochondrial complex I as critical for defining an aggressive phenotype in breast cancer cells. Specific enhancement of mitochondrial complex I activity inhibited tumor growth and metastasis through regulation of the tumor cell NAD+/NADH redox balance, mTORC1 activity, and autophagy. Conversely, nonlethal reduction of NAD+ levels by interfering with nicotinamide phosphoribosyltransferase expression rendered tumor cells more aggressive and increased metastasis. The results translate into a new therapeutic strategy: enhancement of the NAD+/NADH balance through treatment with NAD+ precursors inhibited metastasis in xenograft models, increased animal survival, and strongly interfered with oncogene-driven breast cancer progression in the MMTV-PyMT mouse model. Thus, aberration in mitochondrial complex I NADH dehydrogenase activity can profoundly enhance the aggressiveness of human breast cancer cells, while therapeutic normalization of the NAD+/NADH balance can inhibit metastasis and prevent disease progression.


Assuntos
Neoplasias Encefálicas/metabolismo , Complexo I de Transporte de Elétrons/fisiologia , Neoplasias Pulmonares/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , NAD/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Acrilamidas/farmacologia , Animais , Autofagia , Proteína 5 Relacionada à Autofagia , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Proliferação de Células , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Progressão da Doença , Complexo I de Transporte de Elétrons/biossíntese , Feminino , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Complexos Multiproteicos , NAD/fisiologia , Transplante de Neoplasias , Niacina/farmacologia , Niacinamida/farmacologia , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/metabolismo , Piperidinas/farmacologia , Transporte Proteico , Proteínas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese , Serina-Treonina Quinases TOR
4.
Proc Natl Acad Sci U S A ; 109(40): 16101-6, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22988081

RESUMO

Antibody-drug conjugates (ADCs) allow selective targeting of cytotoxic drugs to cancer cells presenting tumor-associated surface markers, thereby minimizing systemic toxicity. Traditionally, the drug is conjugated nonselectively to cysteine or lysine residues in the antibody. However, these strategies often lead to heterogeneous products, which make optimization of the biological, physical, and pharmacological properties of an ADC challenging. Here we demonstrate the use of genetically encoded unnatural amino acids with orthogonal chemical reactivity to synthesize homogeneous ADCs with precise control of conjugation site and stoichiometry. p-Acetylphenylalanine was site-specifically incorporated into an anti-Her2 antibody Fab fragment and full-length IgG in Escherichia coli and mammalian cells, respectively. The mutant protein was selectively and efficiently conjugated to an auristatin derivative through a stable oxime linkage. The resulting conjugates demonstrated excellent pharmacokinetics, potent in vitro cytotoxic activity against Her2(+) cancer cells, and complete tumor regression in rodent xenograft treatment models. The synthesis and characterization of homogeneous ADCs with medicinal chemistry-like control over macromolecular structure should facilitate the optimization of ADCs for a host of therapeutic uses.


Assuntos
Aminoácidos/química , Anticorpos Monoclonais Humanizados/química , Neoplasias da Mama/tratamento farmacológico , Imunoconjugados/química , Engenharia de Proteínas/métodos , Aminobenzoatos/química , Animais , Linhagem Celular Tumoral , Descoberta de Drogas/métodos , Ensaio de Imunoadsorção Enzimática , Escherichia coli , Feminino , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/uso terapêutico , Imunoglobulina G/química , Camundongos , Camundongos SCID , Oligopeptídeos/química , Receptor ErbB-2/química , Receptor ErbB-2/imunologia , Trastuzumab
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...