Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 90(11): 114709, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31779426

RESUMO

Intense electron beams striking a high-atomic number target produce high-output pulsed photon fluxes for flash x-ray experiments. Without an external guide field, such beams are subject to the dynamics of high-current electron beam propagation, including changes to electron trajectories either from self-fields or from development of beam instabilities. The bremsstrahlung output (dose-rate) scales approximately as IVx, where I is the beam current, V the electron energy, and x is in the range 2.0-2.65 and depends upon the electron angle on the converter. Using experimental beam data (dose-rate, I and V), this equation can be solved for x, a process known as "inverting the radiographer's equation." Inversion methods that rely on thermoluminescent dosimeters, which are time-integrated, yield no information about evolution of the electron beam angle in time. We propose here an inversion method that uses several dose-rate monitors at different angles with respect to the beam axis. By measuring dose-rates at different angles, one can infer the time-dependent beam voltage and angle. This method compares well with estimates of corrected voltage and results in a self-consistent picture of beam dynamics. Techniques are demonstrated using data from self-magnetic pinch experiments at the RITS-6 facility at Sandia National Laboratories.

2.
Phys Rev Lett ; 115(12): 124801, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26430996

RESUMO

Applying the Briggs-Bers "pole-pinch" criterion to the exact transcendental dispersion relation of a dielectric traveling wave tube (TWT), we find that there is no absolute instability regardless of the beam current. We extend this analysis to the circuit band edges of a linear beam TWT by approximating the circuit mode as a hyperbola in the frequency-wave-number (ω-k) plane and consider the weak coupling limit. For an operating mode whose group velocity is in the same direction as the beam mode, we find that the lower band edge is not subjected to absolute instability. At the upper band edge, we find a threshold beam current beyond which absolute instability is excited. The nonexistence of absolute instability in a linear beam TWT and the existence in a gyrotron TWT, both at the lower band edge, is contrasted. The general study given here is applicable to some contemporary TWTs such as metamaterial-based and advanced Smith-Purcell TWTs.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(6 Pt 2): 066405, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21797496

RESUMO

The magneto-Rayleigh-Taylor instability (MRT) of a finite slab is studied analytically using the ideal MHD model. The slab may be accelerated by an arbitrary combination of magnetic pressure and fluid pressure, thus allowing an arbitrary degree of anisotropy intrinsic to the acceleration mechanism. The effect of feedthrough in the finite slab is also analyzed. The classical feedthrough solution obtained by Taylor in the limit of zero magnetic field, the single interface MRT solution of Chandrasekhar in the limit of infinite slab thickness, and Harris' stability condition on purely magnetic driven MRT, are all readily recovered in the analytic theory as limiting cases. In general, we find that MRT retains robust growth if it exists. However, feedthrough may be substantially reduced if there are magnetic fields on both sides of the slab, and if the MRT mode invokes bending of the magnetic field lines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...