Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Ecol Evol ; 39(3): 267-279, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38030539

RESUMO

Tropicalisation is a marine phenomenon arising from contemporary climate change, and is characterised by the range expansion of tropical/subtropical species and the retraction of temperate species. Tropicalisation occurs globally and can be detected in both tropical/temperate transition zones and temperate regions. The ecological consequences of tropicalisation range from single-species impacts (e.g., altered behaviour) to whole ecosystem changes (e.g., phase shifts in intertidal and subtidal habitats). Our understanding of the evolutionary consequences of tropicalisation is limited, but emerging evidence suggests that tropicalisation could induce phenotypic change as well as shifts in the genotypic composition of both expanding and retracting species. Given the rapid rate of contemporary climate change, research on tropicalisation focusing on shifts in ecosystem functioning, biodiversity change, and socioeconomic impacts is urgently needed.


Assuntos
Biodiversidade , Ecossistema , Evolução Biológica , Mudança Climática
2.
Genome Biol Evol ; 16(1)2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38109935

RESUMO

Human activities are accelerating rates of biological invasions and climate-driven range expansions globally, yet we understand little of how genomic processes facilitate the invasion process. Although most of the literature has focused on underlying phenotypic correlates of invasiveness, advances in genomic technologies are showing a strong link between genomic variation and invasion success. Here, we consider the ability of genomic tools and technologies to (i) inform mechanistic understanding of biological invasions and (ii) solve real-world issues in predicting and managing biological invasions. For both, we examine the current state of the field and discuss how genomics can be leveraged in the future. In addition, we make recommendations pertinent to broader research issues, such as data sovereignty, metadata standards, collaboration, and science communication best practices that will require concerted efforts from the global invasion genomics community.


Assuntos
Genômica , Espécies Introduzidas , Humanos , Clima
3.
iScience ; 27(1): 108588, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38111684

RESUMO

Metabarcoding techniques are revolutionizing studies of marine biodiversity. They can be used for monitoring non-indigenous species (NIS) in ports and harbors. However, they are often biased by inconsistent sampling methods and incomplete reference databases. Logistic constraints in ports prompt the development of simple, easy-to-deploy samplers. We tested a new device called polyamide mesh for ports organismal monitoring (POMPOM) with a high surface-to-volume ratio. POMPOMS were deployed inside a fishing and recreational port in the Mediterranean alongside conventional settlement plates. We also compiled a curated database with cytochrome oxidase (COI) sequences of Mediterranean NIS. COI metabarcoding of the communities settled in the POMPOMs captured a similar biodiversity than settlement plates, with shared molecular operational units (MOTUs) representing ca. 99% of reads. 38 NIS were detected in the port accounting for ca. 26% of reads. POMPOMs were easy to deploy and handle and provide an efficient method for NIS surveillance.

5.
Mar Pollut Bull ; 183: 114062, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36075115

RESUMO

Although considerable research progress on the effects of anthropogenic disturbance in the deep sea has been made in recent years, our understanding of these impacts at community level remains limited. Here, we studied deep-sea assemblages of Sicily (Mediterranean Sea) subject to different intensities of benthic trawling using environmental DNA (eDNA) metabarcoding and taxonomic identification of meiofauna communities. Firstly, eDNA metabarcoding data did not detect trawling impacts using alpha diversity whereas meiofauna data detected a significant effect of trawling. Secondly, both eDNA and meiofauna data detected significantly different communities across distinct levels of trawling intensity when we examined beta diversity. Taxonomic assignment of the eDNA data revealed that Bryozoa was present only at untrawled sites, highlighting their vulnerability to trawling. Our results provide evidence for community-wide impacts of trawling, with different trawling intensities leading to distinct deep-sea communities. Finally, we highlight the need for further studies to unravel understudied deep-sea biodiversity.


Assuntos
DNA Ambiental , Biodiversidade , Código de Barras de DNA Taxonômico , Pesqueiros , Caça , Mar Mediterrâneo
6.
Philos Trans R Soc Lond B Biol Sci ; 377(1846): 20210025, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35067092

RESUMO

The use of molecular tools to manage natural resources is increasingly common. However, DNA-based methods are seldom used to understand the spatial and temporal dynamics of species' range shifts. This is important when managing range shifting species such as non-native species (NNS), which can have negative impacts on biotic communities. Here, we investigated the ascidian NNS Ciona robusta, Clavelina lepadiformis, Microcosmus squamiger and Styela plicata using a combined methodological approach. We first conducted non-molecular biodiversity surveys for these NNS along the South African coastline, and compared the results with historical surveys. We detected no consistent change in range size across species, with some displaying range stability and others showing range shifts. We then sequenced a section of cytochrome c oxidase subunit I (COI) from tissue samples and found genetic differences along the coastline but no change over recent times. Finally, we found that environmental DNA metabarcoding data showed broad congruence with both the biodiversity survey and the COI datasets, but failed to capture the complete incidence of all NNS. Overall, we demonstrated how a combined methodological approach can effectively detect spatial and temporal variation in genetic composition and range size, which is key for managing both thriving NNS and threatened species. This article is part of the theme issue 'Species' ranges in the face of changing environments (part I)'.


Assuntos
Biodiversidade , Espécies Introduzidas , Animais , Espécies em Perigo de Extinção , Variação Genética , Humanos
7.
Mar Pollut Bull ; 172: 112893, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34464822

RESUMO

Understanding the spread and distribution of Non-Indigenous Species (NIS) is key when implementing legislation to maintain good ecosystem health. Environmental DNA (eDNA) has shown great potential to detect aquatic organisms in a rapid and cost-effective way, however their applicability to new environments must be validated prior to their implementation. Here, we tested different field sampling methods in combination with eDNA metabarcoding to develop a tool to detect NIS. Large and small volumes of seawater were filtered, in addition to the collection of sediment and horizontal tow net samples at 12 locations across four distinct geographic areas in Ireland. The biggest dissimilarity in the species recovered was found between sediment and town net samples. Tow nets showed to be the most efficient. A total of 357 taxa were identified, including 16 NIS. Fine mesh tow nets were identified as the most cost-efficient for large-scale monitoring and surveillance of NIS.


Assuntos
DNA Ambiental , Organismos Aquáticos , Biodiversidade , Código de Barras de DNA Taxonômico , Ecossistema , Monitoramento Ambiental
8.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34083434

RESUMO

Explaining why some species are widespread, while others are not, is fundamental to biogeography, ecology, and evolutionary biology. A unique way to study evolutionary and ecological mechanisms that either limit species' spread or facilitate range expansions is to conduct research on species that have restricted distributions. Nonindigenous species, particularly those that are highly invasive but have not yet spread beyond the introduced site, represent ideal systems to study range size changes. Here, we used species distribution modeling and genomic data to study the restricted range of a highly invasive Australian marine species, the ascidian Pyura praeputialis This species is an aggressive space occupier in its introduced range (Chile), where it has fundamentally altered the coastal community. We found high genomic diversity in Chile, indicating high adaptive potential. In addition, genomic data clearly showed that a single region from Australia was the only donor of genotypes to the introduced range. We identified over 3,500 km of suitable habitat adjacent to its current introduced range that has so far not been occupied, and importantly species distribution models were only accurate when genomic data were considered. Our results suggest that a slight change in currents, or a change in shipping routes, may lead to an expansion of the species' introduced range that will encompass a vast portion of the South American coast. Our study shows how the use of population genomics and species distribution modeling in combination can unravel mechanisms shaping range sizes and forecast future range shifts of invasive species.


Assuntos
Variação Genética , Genômica , Genótipo , Espécies Introduzidas , Urocordados/genética , Animais , Austrália , Chile
9.
Nat Ecol Evol ; 5(6): 738-746, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33859375

RESUMO

Over millennia, ecological and evolutionary mechanisms have shaped macroecological patterns across the tree of life. Research describing these patterns at both regional and global scales has traditionally focused on the study of metazoan species. Consequently, there is a limited understanding of cross-phylum biogeographic structuring and an escalating need to understand the macroecology of both microscopic and macroscopic organisms. Here we used environmental DNA (eDNA) metabarcoding to explore the biodiversity of marine metazoans, protists and bacteria along an extensive and highly heterogeneous coastline. Our results showed remarkably consistent biogeographic structure across the kingdoms of life despite billions of years of evolution. Analyses investigating the drivers of these patterns for each taxonomic kingdom found that environmental conditions (such as temperature) and, to a lesser extent, anthropogenic stressors (such as fishing pressure and pollution) explained some of the observed variation. Additionally, metazoans displayed biogeographic patterns that suggested regional biotic homogenization. Against the backdrop of global pervasive anthropogenic environmental change, our work highlights the importance of considering multiple domains of life to understand the maintenance and drivers of biodiversity patterns across broad taxonomic, ecological and geographical scales.


Assuntos
Biodiversidade , Eucariotos , Animais , Bactérias/genética
10.
Mar Environ Res ; 164: 105226, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33316607

RESUMO

The current global redistribution of biota is often attributed to two main drivers: contemporary climate change (CCC) and non-indigenous species (NIS). Despite evidence of synergetic effects, however, studies assessing long-term effects of CCC conditions on NIS fitness remain rare. We examined the interactive effects of warming, ocean acidification and reduced salinity on the globally distributed marine NIS Magallana gigas (Pacific oyster) over a ten-month period. Growth, clearance and oxygen consumption rates were measured monthly to assess individual fitness. Lower salinity had a significant, permanent effect on M. gigas, reducing and increasing clearance and oxygen consumption rates, respectively. Neither predicted increases in seawater temperature nor reduced pH had a long-term physiological effect, indicating conditions predicted for 2100 will not affect adult physiology and survival. These results suggest that M. gigas will remain a globally successful NIS and predicted CCC will continue to facilitate their competitive dominance in the near future.


Assuntos
Mudança Climática , Crassostrea , Animais , Concentração de Íons de Hidrogênio , Salinidade , Água do Mar
11.
J Evol Biol ; 34(1): 60-72, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32096898

RESUMO

Human activities alter patterns of biodiversity, particularly through species extinctions and range shifts. Two of these activities are human mediated transfer of species and contemporary climate change, and both allow previously isolated genotypes to come into contact and hybridize, potentially altering speciation rates. Hybrids have been shown to survive environmental conditions not tolerated by either parent, suggesting that, under some circumstances, hybrids may be able to expand their ranges and perform well under rapidly changing conditions. However, studies assessing how hybridization influences contemporary range shifts are scarce. We performed crosses on Pyura herdmani and Pyura stolonifera (Chordata, Tunicata), two closely related marine invertebrate species that are ecologically dominant and can hybridize. These sister species live in sympatry along the coasts of southern Africa, but one has a disjunct distribution that includes northern hemisphere sites. We experimentally assessed the performance of hybrid and parental crosses using different temperature regimes, including temperatures predicted under future climate change scenarios. We found that hybrids showed lower performance than parental crosses at the experimental temperatures, suggesting that hybrids are unlikely to expand their ranges to new environments. In turn, we found that the more widespread species performed better at a wide array of temperatures, indicating that this parental species may cope better with future conditions. This study illustrates how offspring fitness may provide key insights to predict range expansions and how contemporary climate change may mediate both the ability of hybrids to expand their ranges and the occurrence of speciation as a result of hybridization.


Assuntos
Mudança Climática , Hibridização Genética , Urocordados/genética , Animais , Ecossistema , África do Sul , Temperatura , Urocordados/crescimento & desenvolvimento
12.
Evol Appl ; 13(3): 600-612, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32431738

RESUMO

Research on the genetics of invasive species often focuses on patterns of genetic diversity and population structure within the introduced range. However, a growing body of literature is demonstrating the need to study how native genotypes affect both ecological and evolutionary mechanisms within the introduced range. Here, we used genotyping-by-sequencing to study both native and introduced ranges of the amphiatlantic marine invertebrate Ciona intestinalis. A previous study using microsatellites analysed samples collected along the Swedish west coast and showed the presence of genetically distinct lineages in deep and shallow waters. Using 1,653 single nucleotide polymorphisms (SNPs) from newly collected samples (285 individuals), we first confirmed the presence of this depth-defined genomic divergence along the Swedish coast. We then used approximate Bayesian computation to infer the historical relationship among sites from the North Sea, the English Channel and the northwest Atlantic and found evidence of ancestral divergence between individuals from deep waters off Sweden and individuals from the English Channel. This divergence was followed by a secondary contact that led to a genetic admixture between the ancestral populations (i.e., deep Sweden and English Channel), which originated the genotypes found in shallow Sweden. We then revealed that the colonization of C. intestinalis in the northwest Atlantic was as a result of an admixture between shallow Sweden and the English Channel genotypes across the introduced range. Our results showed the presence of both past and recent genetic admixture events that together may have promoted the successful colonizations of C. intestinalis. Our study suggests that secondary contacts potentially reshape the evolutionary trajectories of invasive species through the promotion of intraspecific hybridization and by altering both colonization patterns and their ecological effects in the introduced range.

13.
Sci Rep ; 10(1): 2457, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034176

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Sci Rep ; 9(1): 11559, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399606

RESUMO

Environmental DNA (eDNA) surveys are increasingly being used for biodiversity monitoring, principally because they are sensitive and can provide high resolution community composition data. Despite considerable progress in recent years, eDNA studies examining how different environmental sample types can affect species detectability remain rare. Comparisons of environmental samples are especially important for providing best practice guidance on early detection and subsequent mitigation of non-indigenous species. Here we used eDNA metabarcoding of COI (cytochrome c oxidase subunit I) and 18S (nuclear small subunit ribosomal DNA) genes to compare community composition between sediment and water samples in artificial coastal sites across the United Kingdom. We first detected markedly different communities and a consistently greater number of distinct operational taxonomic units in sediment compared to water. We then compared our eDNA datasets with previously published rapid assessment biodiversity surveys and found excellent concordance among the different survey techniques. Finally, our eDNA surveys detected many non-indigenous species, including several newly introduced species, highlighting the utility of eDNA metabarcoding for both early detection and temporal / spatial monitoring of non-indigenous species. We conclude that careful consideration on environmental sample type is needed when conducting eDNA surveys, especially for studies assessing community change.


Assuntos
DNA Ambiental/análise , Sedimentos Geológicos/análise , Água/análise , Animais , Organismos Aquáticos/genética , Biodiversidade , Código de Barras de DNA Taxonômico/métodos , DNA Ambiental/genética , DNA Ribossômico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Monitoramento Ambiental/métodos , Metagenômica/métodos , Reino Unido
15.
Ecosphere ; 10(3): e02636, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35860719

RESUMO

Coastal urbanization has a dramatic effect on both terrestrial and marine ecosystems, altering resources such as food or space. Many species have shifted their ranges in response to anthropogenic pressures, resulting in novel species interactions. Here, we report an observation of a novel foraging behavior of the European Herring Gull (Larus argentatus): the capture and consumption of the widespread sea squirt Ciona intestinalis from under floating pontoons in a recreational marina in Ireland. Multiple gulls were observed performing a complex, multi-step manipulation of several C. intestinalis individuals to remove their cellulose-based tunic, which remained unconsumed. Further avenues of investigation are discussed, and hypotheses concerning possible ecosystem effects of novel ecological interactions occurring in proliferating artificial environments are presented.

16.
Sci Rep ; 7: 44080, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266616

RESUMO

Invasive species represent promising models to study species' responses to rapidly changing environments. Although local adaptation frequently occurs during contemporary range expansion, the associated genetic signatures at both population and genomic levels remain largely unknown. Here, we use genome-wide gene-associated microsatellites to investigate genetic signatures of natural selection in a model invasive ascidian, Ciona robusta. Population genetic analyses of 150 individuals sampled in Korea, New Zealand, South Africa and Spain showed significant genetic differentiation among populations. Based on outlier tests, we found high incidence of signatures of directional selection at 19 loci. Hitchhiking mapping analyses identified 12 directional selective sweep regions, and all selective sweep windows on chromosomes were narrow (~8.9 kb). Further analyses indentified 132 candidate genes under selection. When we compared our genetic data and six crucial environmental variables, 16 putatively selected loci showed significant correlation with these environmental variables. This suggests that the local environmental conditions have left significant signatures of selection at both population and genomic levels. Finally, we identified "plastic" genomic regions and genes that are promising regions to investigate evolutionary responses to rapid environmental change in C. robusta.


Assuntos
Seleção Genética , Urocordados/genética , Adaptação Fisiológica , Animais , Evolução Molecular , Variação Genética , Genética Populacional , Espécies Introduzidas , Repetições de Microssatélites , Nova Zelândia , República da Coreia , África do Sul , Espanha
17.
Mar Policy ; 85: 56-64, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29681680

RESUMO

The European Union's Marine Strategy Framework Directive (MSFD) aims to adopt integrated ecosystem management approaches to achieve or maintain "Good Environmental Status" for marine waters, habitats and resources, including mitigation of the negative effects of non-indigenous species (NIS). The Directive further seeks to promote broadly standardized monitoring efforts and assessment of temporal trends in marine ecosystem condition, incorporating metrics describing the distribution and impacts of NIS. Accomplishing these goals will require application of advanced tools for NIS surveillance and risk assessment, particularly given known challenges associated with surveying and monitoring with traditional methods. In the past decade, a host of methods based on nucleic acids (DNA and RNA) analysis have been developed or advanced that promise to dramatically enhance capacity in assessing and managing NIS. However, ensuring that these rapidly evolving approaches remain accessible and responsive to the needs of resource managers remains a challenge. This paper provides recommendations for future development of these genetic tools for assessment and management of NIS in marine systems, within the context of the explicit requirements of the MSFD. Issues considered include technological innovation, methodological standardization, data sharing and collaboration, and the critical importance of shared foundational resources, particularly integrated taxonomic expertise. Though the recommendations offered here are not exhaustive, they provide a basis for future intentional (and international) collaborative development of a genetic toolkit for NIS research, capable of fulfilling the immediate and long term goals of marine ecosystem and resource conservation.

18.
Glob Chang Biol ; 23(5): 1861-1870, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27782357

RESUMO

Ecologists have recently devoted their attention to the study of species traits and their role in the establishment and spread of nonindigenous species (NIS). However, research efforts have mostly focused on studies of terrestrial taxa, with lesser attention being dedicated to aquatic species. Aquatic habitats comprise of interconnected waterways, as well as exclusive introduction vectors that allow unparalleled artificial transport of species and their propagules. Consequently, species traits that commonly facilitate biological invasions in terrestrial systems may not be as represented in aquatic environments. We provide a global meta-analysis of studies conducted in both marine and freshwater habitats. We selected studies that conducted experiments with native and NIS under common environmental conditions to allow detailed comparisons among species traits. In addition, we explored whether different factors such as species relatedness, functional feeding groups, latitude, climate, and experimental conditions could be linked to predictive traits. Our results show that species with traits that enhance consumption and growth have a substantially increased probability of establishing and spreading when entering novel ecosystems. Moreover, traits associated with predatory avoidance were more prevalent in NIS and therefore favour invasive species in aquatic habitats. When we analysed NIS interacting with taxonomically distinctive native taxa, we found that consumption and growth were particularly important traits. This suggests that particular attention should be paid to newly introduced species for which there are no close relatives in the local biota. Finally, we found a bias towards studies conducted in temperate regions, and thus, more studies in other climatic regions are needed. We conclude that studies aiming at predicting future range shifts should consider trophic traits of aquatic NIS as these traits are indicative of multiple interacting mechanisms involved in promoting species invasions.


Assuntos
Ecossistema , Cadeia Alimentar , Espécies Introduzidas , Animais , Clima , Água Doce , Água do Mar
19.
Biol Lett ; 12(10)2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27729485

RESUMO

Human activities are responsible for the translocation of vast amounts of organisms, altering natural patterns of dispersal and gene flow. Most research to date has focused on the consequences of anthropogenic transportation of non-indigenous species within introduced ranges, with little research focusing on native species. Here, we compared genetic patterns of the sessile marine invertebrate, Ciona intestinalis, which has highly restricted dispersal capabilities. We collected individuals in a region of the species' native range where human activities that are known to facilitate the artificial spread of species are prevalent. Using microsatellite markers, we revealed highly dissimilar outcomes. First, we found low levels of genetic differentiation among sites separated by both short and large geographical distances, indicating the presence of anthropogenic transport of genotypes, and little influence of natural geographical barriers. Second, we found significant genetic differentiation in pairwise comparisons among certain sites, suggesting that other factors besides artificial transport (e.g. natural dispersal, premodern population structure) may be shaping genetic patterns. Taken together, we found dissimilar patterns of population structure in a highly urbanized region that could not be predicted by artificial transport alone. We conclude that anthropogenic activities alter genetic composition of native ranges, with unknown consequences for species' evolutionary trajectories.


Assuntos
Evolução Biológica , Ciona intestinalis/genética , Distribuição Animal , Animais , Inglaterra , França , Genótipo , Espécies Introduzidas , Repetições de Microssatélites
20.
Trends Ecol Evol ; 29(4): 233-42, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24636862

RESUMO

Genetic admixture of divergent intraspecific lineages is increasingly suspected to have an important role in the success of colonising populations. However, admixture is not a universally beneficial genetic phenomenon. Selection is typically expected to favour locally adapted genotypes and can act against admixed individuals, suggesting that there are some conditions under which admixture will have negative impacts on population fitness. Therefore, it remains unclear how often admixture acts as a true driver of colonisation success. Here, we review the population consequences of admixture and discuss its costs and benefits across a broad spectrum of ecological contexts. We critically evaluate the evidence for a causal role of admixture in successful colonisation, and consider that role more generally in driving population range expansion.


Assuntos
Variação Genética , Genética Populacional/tendências , Distribuição Animal , Evolução Biológica , Vigor Híbrido , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...