Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 646: 763-774, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37229994

RESUMO

HYPOTHESIS: The use of superhydrophobic materials to remove particulate pollutants such as microplastics is still in its infancy. In a previous study, we investigated the effectiveness of three different types of superhydrophobic materials - coatings, powdered materials, and meshes - for removing microplastics. In this study, we will explain the removal process by considering microplastics as colloids and taking into account their wetting properties as well as those of a superhydrophobic surface. The process will be explained through the interactions of electrostatic forces, van der Waals forces, and the DLVO theory. EXPERIMENTS: In order to replicate and verify the previous experimental findings on the removal of microplastics using superhydrophobic surfaces, we have modified non-woven cotton fabrics with polydimethylsiloxane. We then proceeded to remove high-density polyethylene and polypropylene microplastics from water by introducing oil at the microplastics-water interface, and we determined the removal efficiency of the modified cotton fabrics. FINDINGS: After achieving a superhydrophobic non-woven cotton fabric (159 ± 1°), we confirmed its effectiveness in removing high-density polyethylene and polypropylene microplastics from water with a removal efficiency of 99%. Our findings suggest that the binding energy of microplastics increases and the Hamaker constant becomes positive when they are present in oil instead of water, leading to their aggregation. As a result, electrostatic interactions become negligible in the organic phase, and van der Waals interactions become more important. The use of the DLVO theory allowed us to confirm that solid pollutants can be easily removed from the oil using superhydrophobic materials.

2.
Mar Pollut Bull ; 167: 112335, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33839572

RESUMO

Microplastic (MP) pollution is a matter of great concern attracting increasing attention due to its adverse effects on the environment. Different technologies and methodologies have been developed to remove these pollutants. Herein, we focus on a promising environmental solution that involves surface modification to change the wettability properties of MPs or solid materials by conferring superhydrophobicity and superoleophilicity to increase the selectivity for MP separation. Both processes can be used to selectively separate MPs because of the changes in the wettable properties of the MP or by changing the oil used in the case of superhydrophobic surfaces. We show two distinct methods based on changing the wettability properties of surfaces that could lead to innovative and environmental applications. We also discuss some of the challenges that need to be overcome.


Assuntos
Microplásticos , Poluentes Químicos da Água , Poluição Ambiental , Plásticos , Poluentes Químicos da Água/análise , Molhabilidade
3.
ACS Appl Mater Interfaces ; 12(40): 45629-45640, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32926613

RESUMO

The pollution of oceans and seas by oils and microplastics is a significant global issue affecting the economy and environment. Therefore, it is necessary to search for different technologies that can remove these pollutants in a sustainable way. Herein, superhydrophobic powdered iron was used to efficiently separate stabilized oil-in-water emulsions and, remarkably, capture microplastic fibers. High-energy ball milling of iron particles was applied to decrease particle size, increase the specific surface area, and produce a nanostructured material. This was combined with the liquid phase deposition of lauric acid to modify the surface free energy. The nanostructured powder showed superhydrophobicity (WCA = 154°) and superoleophilicity (OCA = 0°), which were fundamental in separating stabilized oil-in-water emulsions of hexane with an efficiency close to 100%. Because of the superhydrophobic/superoleophilic properties of the powdered iron and its intrinsic properties of being able to freely move and adapt to the different morphologies of microplastics under continuous stirring, this material can capture microplastic fibers. Thus, we present a novel dual application of a superhydrophobic material, which includes the capture of microplastics. This has not been reported previously and provides a new scope for future environmental sustainability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA